Меню

Законы менделя таблица название закона и его суть

Законы менделя таблица название закона и его суть

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания

Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно — 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Читайте также:  Sql системные таблицы sql server

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме «Законы Менделя»:

Перейти к чтению других тем книги «Генетика и селекция. Теория. Задания. Ответы»:

Источник



Законы Менделя кратко и понятно

  • Грегор Иоганн Мендель
  • Законы Менделя
  • Закон единообразия гибридов первого поколения
  • Закон расщепления
  • Закон чистоты гамет
  • Закон наследования признаков

База современной генетики была заложена в XIX веке исследованиями нескольких европейских ученых. Результаты этих работ были обобщены Георгом Менделем, который на их основании сформулировал несколько гипотез. Дальнейшее развитие науки подтвердило его правоту.

Грегор Иоганн Мендель

Грегор Мендель (1822-1884) — австрийский биолог и ботаник, создатель учения о наследственности. Проведенные им опыты по скрещиванию и гибридизации растений заложили основы современной генетики. Стремясь изучить механизм наследования и передачу отдельных признаков, он провел широкомасштабный опыт на разных видах гороха, исследовав в общей сложности около 20 000 гибридов. В результате он сформулировал несколько базовых принципов, получивших впоследствии название «Законы Менделя».

В краткой форме о проделанной работе он рассказал в докладе Брюннскому обществу естествоиспытателей в 1865 году, но его исследования не заинтересовали научное сообщество. Впоследствии ученый пытался проверить свои выводы на других видах растений и животных, но потерпел неудачу, из-за чего разуверился в своих достижениях и больше к подобным изысканиям не возвращался.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Настоящее признание к нему пришло уже после смерти, в начале XX века, когда генетика стала оформляться как самостоятельное направление в биологии. В это время несколько ученых самостоятельно друг от друга пришли к тем же выводам, что и Грегор Мендель, и открытые им принципы пережили второе рождение.

Законы Менделя

В первой половине XIX века учеными Европы была проделана большая работа, заложившая базу для дальнейших исследований по скрещиванию:

  • Джон Госс — на примере гороха исследовал, что признаки не проявившиеся у гибридов изначально (зеленовато-голубой цвет зерен), возникают во втором поколении.
  • Огюстен Сажрэ — экспериментировал с дынями, изучая, как при скрещивании передаются отдельные характеристики (расцветка кожуры, вкус, форма семян). Так, смешивая плоды с кислым и сладким вкусом он ожидал увидеть в итоге нечто среднее, но на практике один из этих признаков передавался гибридам в неизменном виде, без смешивания. Исследователь назвал такую наследственность «константной» вместо ожидаемой «слитой».
  • Шарль Ноден — работая с дурманом определил, что преобладание признаков одного вида над другим, не зависит от того, какое растение было отцовским, а какое — материнским.

Исследователями были выявлены принципы доминантности, сходства потомков в первом поколении, расщепление и комбинаторику признаков при повторном смешивании. При этом не был открыт всеобщий закон, регулирующий образование гибридов и численное выражение получаемых результатов — в этом заключается главная заслуга Георга Менделя.

Им были сформулированы и доказаны:

  • Закон единообразия гибридов первого поколения — неизменность (несмешиваемость) признаков при первоначальном смешивании.
  • Закон расщепления — рецессивный ген проявляется в следующих поколениях в определенном соотношении.
  • Закон чистоты гамет — при формировании репродуктивных клеток используется только по одному аллелю из генов родителей.
  • Закон наследования признаков — если особи отличаются по двум и более параметрам, то при скрещивании эти качества передаются и комбинируются независимо друг от друга.

Закон единообразия гибридов первого поколения

Первый закон Менделя — при моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

При моногибридном скрещивании, исследуется наследование только одной пары альтернативных признаков (например, только мягкий или кислый вкус), при дигибридном — две (дополнительно это может быть форма семян — округлая или угловатая), при полигибридном — несколько (еще и другие качества — цвет, фактуру кожуры и пр.).

Альтернативные признаки — взаимоисключающие дискретные признаки, которые обычно не могут присутствовать у организма одновременно (например, желтая или зеленая окраска горошин, красная или белая окраска цветков у гороха).

Фенотип — набор признаков, характерных для организма на определенной стадии развития. Например, у растений это форма листьев, цвет плодов и др.

Генотип — совокупность генов у конкретного организма.

В соответствии с этим Законом единообразия гибридов первого поколения, при возможности наследовать два однотипных признака все потомки первого поколения приобретают одно и то же качество. Оно переходит к ним в неизменной форме без смешивания. Мендель назвал такой признак доминантным, более слабый, подавляемый — рецессивным.

Например, можно провести скрещивание гороха с генотипом желтого (АА) и зеленого (аа) цвета зерен. При доминировании первого признака, ген (А) в первом поколении будет подавлять (а) и не даст ему появиться. Полученные семена (Аа) будут иметь желтый цвет, который такой же, как и у одного из родителей. Другое название приведенного Закона — принцип доминирования признаков.

По сложившейся традиции, приписными буквами (А) обозначается доминантный ген, срочными (а) — рецессивный.

Формулировка этого закона основывалась на наличии чистой линии — возможности организмов полностью передавать некоторые признаки. К примеру, это могут быть сорта растений, потомство которых при самоопылении будет морфологически сходным и генетически идентичным.

Дальнейшее развитие биологии уточнило выводы Грегора Менделя. Так для некоторых типов генов возможно неполное доминирование. В этом случае подавление происходит только частично, что приводит к смешиванию признаков. Например, при скрещивании цветков ночной красавицы с красными (АА) и белыми (аа) лепестками, потомство будет иметь розовый (Аа) цвет.

В отдельных случаях возможно кодоминирование, когда признаки выступают смешанно (синхронно). Например, это проявляется, когда ребенок наследует группу крови типа АВ0 от родителей (тут А и В – доминантные гены, 0 – рецессивный). Возможные ситуации:

  • 00 – I группа;
  • АА и А0 – II гр.;
  • ВВ и В0 – III гр.;
  • АВ — IV гр.

Например, в соответствии с указанной схемой, у родителей со II и III группами крови, в 25% случаев у ребенка будет IV гр.

С учетом неполного доминирования и кодоминирования можно уточнить исходную формулировку Менделя — при гибридизации чистых линий с противоположными признаками, потомство первого поколения всегда будет идентичным, при этом:

  • проявится наиболее сильное качество, если они находятся в отношении доминирования-подавления;
  • обнаружится смешанная форма, если они будут в состоянии кодоминирования или неполного доминирования.

Закон расщепления

Второй закон Менделя — при моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Гетерозиготные особи — такие организмы, у которых копии генов в хромосомах представлены разными аллелями. В результате неполного или полного доминирования может проявляться как смесь этих признаков (АВ), так и один из них (Аb). Противоположностью гетерозиотности является гомозиготность, когда аллели гена в хромосомах идентичны.

Аллель — различные формы одного и того же гена, расположенные в одинаковых участках хромосом.

В соответствии со вторым законом Менделя, при скрещивании гетерозиготных особей происходит расщепление, когда часть потомства несет доминантный признак, а часть — рецессивный. Проявление более слабых характеристик свидетельствует о том, что они не подавляются полностью.

Так, расщепление при скрещивании двух особей типа Аb (где А — доминантный зеленый цвет, b — рецессивный желтый) покажет следующие результаты: АА, Аb, Аb и bb, которые в соответствии со вторым законом Менделя будут различаться:

  • По фенотипу — на 1 потомка с проявлением зеленого цвета (bb) будет приходится 3 желтых (АА, Аb, Аb).
  • По генотипу — на 1 особь типа АА, будет приходится 2 Аb и 1 bb.

Необходимо знать, что для выполнения второго закона Менделя необходимо соблюдение нескольких условий. К наиболее важным относятся:

  • Изучение большого числа потомков или скрещиваний.
  • Отсутствие избирательности при оплодотворении — гаметы с разными аллелями сливаются с одинаковой вероятностью.
  • Родители должны изначально относиться к чистым линиям, то есть гомозиготны по выбранному гену (AA и aa).
  • У разных генотипов должна быть одинаковая выживаемость.

Закон чистоты гамет

Закон чистоты гамет подразумевает, что в эту клетку попадает только один аллель из пары, имеющейся у гена родителя.

Гаметы — репродуктивные клетки, имеющие одинарный набор хромосом и участвующие в половом размножении.

По гипотезе Менделя, понадобившейся ему для обоснования Закона расщепления, при слиянии мужской и женской гамет наследственные признаки не смешиваются, а передаются в изначальном виде (то есть остаются чистыми). Позднее было подтверждено, что от отцовского и материнского организмов зигота получает по половине хромосом.

Из всех закономерностей, установленных Менделем для наследственности, этот закон имеет наиболее общий характер, то есть, выполняется для самого широкого круга обстоятельств.

Закон наследования признаков

Третий закон Менделя — если особи отличаются двумя (и более) парами признаков, то при скрещивании эти особенности наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Согласно этому правилу, если гены находятся в разных хромосомах, дигетерозиота АаBb может образовать 4 типа гамет: АB, Аb, аB и аb (где А — желтые семена, а — зеленые, В — гладкие, b — морщинистые). Из 16-ти возможных комбинаций они образуют следующие фенотипы:

  • Желтые гладкие (ААВВ и др.) — 4 шт.
  • Желтые морщинистые (ААbb и др.) — 3 шт.
  • Зеленые гладкие (aaВВ и др.) — 3 шт.
  • Зеленые морщинистые (ааbb) — 1 шт.

Таким образом, из представленной схемы видно, что среди гибридов второго поколения расщепление идет в соотношении 4:3:3:1. Исследованиями биологов было установлено, что важным условием выполнения этого Закона является ситуация, при которой гены, отвечающие за конкретные признаки должны находиться в разных парах хромосом.

Источник

Законы Менделя

В предыдущей статье мы познакомились с фундаментальными понятиями и методами генетики. Настало время их применить при изучении нового раздела — Менделевской генетики, основанной на законах, открытых Грегором Менделем.

Мендель следовал некоторым принципам в своих исследованиях, которые привели его работы к успеху:

    Использовал гибридологический метод генетики, подвергая скрещиванию растения гороха с четко различающимися признаками: желтый — зеленый цвет семян, гладкая — морщинистая форма семян

Желтый и зеленый горох

Чистая линия

Введем несколько новых терминов, которые нам пригодятся. Скрещивание может быть:

  • Моногибридным — в случае если скрещиваемые особи отличаются только по одному исследуемому признаку (цвет семян)
  • Дигибридным — если скрещиваемые особи отличаются по двум различным признакам (цвет и форма семян)
Читайте также:  Как рассчитать таблицу пифагора самостоятельно

В схеме решения генетическое задачи есть некоторые обозначения: ♀ — женский организм, ♂ — мужской организм, P — родительские организмы, F1 — гибриды первого поколения, F2 — гибриды второго поколения. Вероятно, имеет смысл сохранить картинку ниже себе на гаджет, если вы только приступаете к изучению генетики 😉

Символы в генетической задаче

Спешу сообщить вам, что браки между людьми (в отличие от насильственного скрещивания гороха) происходят только по любви и взаимному согласию! Поэтому в задачах, где речь идет о людях, не следует ставить знак скрещивания «×» между родительскими особями. В таком случае ставьте знак «→» — «стрелу Амура», чтобы привести в восхищение экзаменатора 🙂

Первый закон Менделя — закон единообразия

С него часто начинаются генетические задачи (в качестве первого скрещивания). Этот закон гласит о том, что при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения будут единообразны по данным признакам.

Первый закон Менделя

Этот закон основан на варианте взаимодействия между генами — полном доминировании. При таком варианте один ген — доминантный, полностью подавляет другой ген — рецессивный. В эксперименте, который мы только что изучили, Мендель скрещивал чистые линии гороха с желтыми (АА) и зелеными (aa) семенами, в результате все потомство имело желтый цвет семян (Aa) — было единообразно.

Анализирующее скрещивание

Часто генотип особи не изучен и представляет загадку. Как быть генетику в данном случае? Иногда проще всего применить анализирующее скрещивание — скрещивание гибридной особи (у которой не известен генотип) с гомозиготой по рецессивному признаку.

Анализируя полученное потомство, можно сделать вывод о генотипе гибридной особи.

Анализирующее скрещивание

В рассмотренном случае, если генотип изучаемой особи содержит два доминантных гена (AA) — то в потомстве не может проявиться рецессивного признака, так как все потомство будет единообразно (Aa). Если изучаемая особь содержит рецессивный ген (Aа), то половина потомства будет его иметь (aa). В результате становится известен генотип гибридной особи.

Неполное доминирование

Помимо полного доминирования, существует неполное доминирование, которое характерно для некоторых генов. Известным примером неполного доминирования является наследование окраски лепестков у растения ночная красавица. В этом случае гены не полностью подавляют друг друга — проявляется промежуточный признак.

Неполное доминирование

Обратите внимание, потомство F1 получилось также единообразным (возможен только один вариант — Aa), но фенотипически у гетерозиготы признак будет проявляться как промежуточное состояние (AA — красный, aa — белый, Aa — розовый). Это можно сравнить с палитрой художника: представьте, как смешиваются красный и белый цвета — получается розовый.

Второй закон Менделя — закон расщепления

«При скрещивании гетерозиготных гибридов (Aa) первого поколения F1 во втором поколении F2 наблюдается расщепление по данному признаку: по генотипу 1 : 2 : 1, по фенотипу 3 : 1″

Второй закон Менделя

Скрещивая между собой гибриды первого поколения (Aa) Мендель обнаружил, что в потомстве особей с доминантным признаком (AA, Aa — желтый цвет семян) примерно в 3 раза больше, чем особей с рецессивным (aa).

Искренне желаю того, чтобы вы научились сами определять расщепление по генотипу и фенотипу. Это сделать несложно: когда речь идет о генотипе, обращайте внимание только на гены (буквы), то есть, если перед вами особи AA, Aa, Aa, aa, — следует брать генотипы по очереди и складывать количество одинаковых генотипов. Именно в результате таких действий соотношение по генотипу получается 1:2:1.

Если перед вами стоит задача посчитать соотношение по фенотипу, то вообще не смотрите на гены — это только запутает! Следует учитывать лишь проявление признака. В потомстве получилось 3 растения с желтым цветом семян и 1 с зеленым, следовательно, расщепление по фенотипу 3:1.

Третий закон Менделя — закон независимого наследования

В нем речь идет о дигибридном скрещивании, то есть мы исследуем не один, а два признака у особей (к примеру, цвет семян и форма семян). Каждый ген имеет два аллеля, поэтому пусть вас не удивляют генотипы AaBb 🙂 Важно заметить, что речь в данном законе идет о генах, которые расположены в разных хромосомах.

Независимое наследование

Запомните III закон Менделя так: «При скрещивании особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга, комбинируясь друг с другом во всех возможных сочетаниях.

Комбинации генов отражаются в образовании гамет. В соответствии с правилом, изложенным выше, дигетерозигота AaBb образует 4 типа гамет: AB, ab, Ab, aB. Повторюсь — это только если гены находятся в разных хромосомах. Если они находятся в одной, как при сцепленном наследовании, то все протекает по-другому, но это уже предмет изучения следующей статьи.

Закон независимого наследования

Каждая особь AaBb образует 4 типа гамет, возможных гибридов второго поколения получается 16. При таком обилии гамет и большом количестве потомков, разумнее использовать решетку Пеннета, в которой вдоль одной стороны квадрата расположены мужские гаметы, а вдоль другой — женские. Это помогает более наглядно представить генотипы, получающиеся в результате скрещивания.

В результате скрещивания дигетерозигот среди 16 потомков получается 4 возможных фенотипа:

  • Желтые гладкие — 9
  • Желтые морщинистые — 3
  • Зеленые гладкие — 3
  • Зеленые морщинистые — 1

Очевидно, что расщепление по фенотипу среди гибридов второго поколения составляет: 9:3:3:1.

Пример решения генетической задачи №1

Доминантный ген отвечает за развитие у человека нормальных глазных яблок. Рецессивный ген приводит к почти полному отсутствию глазных яблок (анофтальмия). Гетерозиготы имеют глазное яблоко малых размеров (микрофтальмия). Какое строение глазных яблок будет характерно для потомства, если оба родителя страдают микрофтальмией?

Пример решения генетической задачи

Обратите внимание на то, что доминирование генов неполное: человек с генотипом Aa будет иметь промежуточное значение признака — микрофтальмию. Поскольку доминирование неполное, то расщепление по генотипу и фенотипу совпадает, что типично для неполного доминирования.

В данной задаче только ¼ потомства (25%) будет иметь нормальные глазные яблоки. ½ часть потомства (50%) будет иметь глазное яблоко малых размеров — микрофтальмию, и оставшаяся ¼ (25%) будут слепыми с почти полным отсутствием глазных яблок (анофтальмией).

Не забывайте, что генетика, по сути, теория вероятности. Очевидно, что в жизни в такой семье может быть рождено 4 подряд здоровых ребенка с нормальными глазными яблоками, или же наоборот — 4 слепых ребенка. Может быть как угодно, но мы с вами должны научиться говорить о «наибольшей вероятности», в соответствии с которой с вероятностью 50% в этой семье будет рожден ребенок с микрофтальмией.

Пример решения генетической задачи №2

Полидактилия и отсутствие малых коренных зубов передаются как аутосомно-доминантные признаки. Гены, отвечающие за развитие этих признаков, расположены в разных парах гомологичных хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов.

Я хочу сразу навести вас на мысль о III законе Менделя (закон независимого наследования), который скрыт в фразе » Гены . расположены в разных парах гомологичных хромосом». Вы увидите в дальнейшем, насколько ценна эта информация. Также заметьте, что речь в этой задаче идет о аутосомных генах (расположенных вне половых хромосом). Аутосомно-доминантный тип наследования означает, что болезнь проявляется, если ген в доминантном состоянии: AA, Aa — болен.

Пример решения генетической задачи

В данном случае мы построим решетку Пеннета, которая сделает генотипы потомства более наглядными. Вы видите, что на потомстве буквально нет ни одного живого места: почти все 16 возможных потомков больны либо одним, либо другим заболеванием, кроме одного, aabb. Вероятность рождения такого ребенка очень небольшая 1/16 = 6.25%.

Пример решения генетической задачи №3

У голубоглазой близорукой женщины от брака с кареглазым мужчиной с нормальным зрением родилась кареглазая близорукая девочка и голубоглазый мальчик с нормальным зрением. Ген близорукости (A) доминантен по отношению к гену нормального зрения (a), а ген кареглазости (D) доминирует над геном голубоглазости (d). Какова вероятность рождения в этой семье нормального кареглазого ребенка?

Пример решения генетической задачи

Первый этап решения задачи очень важен. Мы учли описания генотипов родителей и, тем не менее, белые пятна остались. Мы не знаем гетерозиготна (Aa) или гомозиготная (aa) женщина по гену близорукости. Такая же ситуация и с мужчиной, мы не можем точно сказать, гомозиготен (DD) он или гетерозиготен (Dd) по гену кареглазости.

Разрешение наших сомнений лежит в генотипе потомка, про которого нам рассказали: «голубоглазый мальчик с нормальным зрением» с генотипом aadd. Одну хромосому ребенок всегда получает от матери, а другу от отца. Выходит, что такого генотипа не могло бы сформироваться, если бы не было гена a — от матери, и гена d — от отца. Следовательно, отец и мать гетерозиготны.

Пример решения генетической задачи

Теперь мы можем точно сказать, что вероятность рождения в этой семье нормального кареглазого ребенка составляет ¼ или 25%, его генотип — Ddaa.

Аутосомно-доминантный тип наследования

Я не забыл о том, что по ходу изучения генетики вас надо научить видеть различные варианты наследования на генеалогическом древе (родословной) =) Из предыдущей статьи мы узнали о том, как выглядит и чем характеризуется аутосомно-рецессивный тип наследования, сейчас поговорим об аутосомно-доминантном, с которым мы столкнулись в задачах выше.

Аутосомно-доминантный тип наследования можно узнать по следующим признакам:

  • Болезнь проявляется в каждом поколении семьи (передача по вертикали)
  • Здоровые дети больных родителей имеют здоровых детей
  • Мальчики и девочки болеют одинаково часто
  • Соотношение больных и здоровых 1:1

Аутосомно-доминантный тип наследования

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Тема 2. Законы Менделя

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Читайте также:  Таблица умножения злые птички

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания

Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно — 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме «Законы Менделя»:

Перейти к чтению других тем книги «Генетика и селекция. Теория. Задания. Ответы»:

Источник

Adblock
detector