Меню

Вся таблица масок подсети



Маска IP-адреса.

Вопрос о том, что такое * маска IP-адреса*, из чего она состоит и как используется, приходится слышать довольно часто. Самое неприятное, что в Интернете есть много непроверенной, устаревшей и не соответствующей действительности информации. Поэтому постараюсь ответить максимально подробно.

Кстати, на нашем сайте вы можете узнать свой ip адрес.

Из скольки бит состоит IP-адрес?

Для вас это простой вопрос, на который вы отвечаете не задумываясь? И ответите правильно, даже если вас разбудят среди ночи? Значит, вы профессиональный айтишник — сетевой инженер или, например, администратор. Если вы засомневались, не беда. Дочитав статью до конца, вы наверняка узнаете много интересного.

Для удобства информация разделена на шесть порций, или небольших глав. Есть мудрая поговорка, что нельзя съесть слона целиком, но можно съесть его по частям. Поехали.

Маска ip адреса общие понятия.

IP-адрес (v4) состоит из 32-бит. Это можно взять в рамочку, как в школьных учебниках. Желательно запомнить и про IPv6 тоже: 128 бит.

Теоретически IPv4-адресов может быть: 2 32 = 2 10 *2 10 *2 10 *2 2 = 1024*1024*1024*4 ≈ 1000*1000*1000*4 = 4 млрд.

Всего 4 миллиарда. Но дальше будет рассмотрено, сколько из них не используется, грубо говоря, съедается.

Как записывается IPv4-адрес? Он состоит из четырёх октетов и записывается в десятичном представлении без начальных нулей, октеты разделяются точками: например, «192.168.11.10».

Если что, октет — это ровно то же самое, что байт. Но если вы скажете «октет» в среде профессионалов, они вас сразу зауважают и вам легче будет сойти за своего.

В заголовке IP-пакета есть поля «source IP» и «destination IP». Это адреса источника: кто посылает и назначения: кому отправлено. Почти как на почтовом конверте. Внутри пакетов у IP-адресов нет никаких масок, и разделителей между октетами тоже нет. Просто 32 бита для адреса назначения и еще 32 для адреса источника.

Однако, когда IP-адрес присваивается интерфейсу — ещё говорят, сетевому адаптеру — компьютера или маршрутизатора, то, кроме самого адреса этого устройства, ему присваивают еще и маску подсети.

Можно повторить, это важно: * маска IP-адреса* НЕ передается в заголовках IP-пакетов.

Компьютерам маска подсети нужна для определения границ. угадайте, чего именно. подсети. Это нужно, чтобы каждый мог определить, кто находится с ним в одной (под)сети, а кто — за ее пределами. Вообще-то можно говорить просто «сети», часто этот термин используют именно в значении «IP-подсеть». Внутри одной сети компьютеры обмениваются пакетами напрямую, но если нужно послать пакет в другую сеть, шлют их шлюзу по умолчанию (это третий параметр, настраиваемый в сетевых свойствах). Вот как это происходит.

Маска подсети — это тоже 32-бита. Но, в отличие от IP-адреса, нули и единицы в ней не могут чередоваться. Всегда сначала идут единицы, потом нули.

  • Не может быть маски 120.22.123.12=01111000.00010110.01111011.00001100.
  • Но может быть маска 255.255.248.0=11111111.11111111.11111000.00000000.

Сначала N единиц, потом 32-N нулей. Легко догадаться, что такая форма записи избыточна. Вполне хватило бы числа N, называемого длиной маски. Так и делают: пишут 192.168.11.10/21 вместо 192.168.11.10 255.255.248.0. Обе формы имеют один и тот же смысл, но первая заметно удобнее.

Чтобы определить границы подсети, компьютер делает побитовое умножение (логическое И) между IP-адресом и маской, а на выходе получает адрес с обнулёнными битами в позициях нулей маски.

Рассмотрим пример 192.168.11.10/21:

Маска ip адреса, адрес подсети.

Владение двоичной арифметикой обязательно для любого профессионального администратора. Нужно уметь безошибочно переводить IP-адреса из десятичной формы в двоичную и обратно. Это может делаться в уме или на бумажке. Обходиться в таких вопросах без калькулятора — это требование суровой действительности.

Адрес 192.168.8.0 называется адресом подсети. Обратите внимание на все обнулённые биты на позициях, которые соответствуют нулям в маске. Адрес подсети обычно нельзя использовать в качестве адреса для интерфейса того или иного хоста.

Если, наоборот эти же биты превратить в единицы, то получится адрес 192.168.15.255. Такой адрес называется направленным бродкастом (то есть широковещательным) для данной сети. Сейчас особого смысла в нём нет, но когда-то раньше считалось, что все хосты в подсети должны на него откликаться. Сейчас это неактуально, однако этот адрес тоже (обычно) нельзя использовать как адрес хоста.

Получается, из каждой подсети выбрасывается два адреса. Остальные адреса в диапазоне от 192.168.8.1 до 192.168.15.254 включительно — это полноправные адреса хостов внутри подсети 192.168.8.0/21. Их, все без исключения, можно использовать для назначения на компьютерах.

Зрительно адрес как бы делится на две части. Та часть адреса, которой соответствуют единицы в маске, является идентификатором подсети — или адресом подсети. Обычно её называют «префикс».

Вторая часть, которой соответствуют нули в маске — это идентификатор хоста внутри подсети.

Очень часто встречается адрес подсети в таком виде:

  • 192.168.8.0 255.255.248.0

Когда маршрутизатор прокладывает в сети маршруты для передачи трафика, он оперирует именно префиксами.

Как ни странно, он не интересуется местонахождением хостов внутри подсетей. Об этом знает только шлюз по умолчанию конкретной подсети (технологии канального уровня могут отличаться).

Главное: в отрыве от подсети адрес хоста не используется совсем.

Длина маски подсети.

Количество хостов в подсети определяется как 232-N-2, при этом N — длина маски.

Логичный вывод: чем длиннее маска, тем меньше в ней хостов.

Ещё один полезный логический вывод: максимальной длиной маски для подсети с хостами будет N=30.

Именно сети /30 чаще всего используют для адресации на point-to-point-линках между маршрутизаторами.

Большинство маршрутизаторов сегодня отлично работает и с масками /31, используя адрес подсети (нуль в однобитовой хостовой части) и бродкаст (единица) в качестве адресов интерфейсов. Однако администраторы и сетевые инженеры иногда просто боятся такого подхода, согласно проверенному принципу «мало ли что».

А вот * маска IP-адреса* /32 используется гораздо чаще. С ней удобно работать, во-первых, при адресации так называемых loopback-интерфейсов. Во-вторых, практически невозможно ничего напутать: /32 — это подсеть, состоящая из одного хоста, то есть по сути никакая и не сеть.

Если администратору сети приходится оперировать не группами хостов, а индивидуальными машинами, то с каждым разом сеть становится всё менее масштабируемой, в ней резко увеличивается вероятность всяческого бардака и никому не понятных правил. За исключением, наверное, только написания файрвольных правил для серверов: вот там специфичность ценится и котируется.

Читайте также:  Сплавы нержавеющей стали таблица

Другими словами, с пользователями лучше обращаться не индивидуально, а массово, целыми подсетями, иначе сеть быстро станет неуправляемой.

Интерфейс, на котором настроен IP-адрес, иногда могут называть IP-интерфейсом или L3-интерфейсом («эл-три», тема «модель OSI»).

До того как послать IP-пакет, компьютер определяет, попадёт ли адрес назначения в «свою» подсеть. Если ответ положительный, то он шлёт пакет «напрямую», если отрицательный — направляет его шлюзу по умолчанию, то есть маршрутизатору.

Адресом шлюза по умолчанию обычно назначают первый адрес хоста в подсети, хотя это и вовсе не обязательно. В нашем примере адрес шлюза 192.168.8.1 — для красоты.

Маршрутизатор и шлюз подсети.

Наверное, лучше повторить: шлюз и маршрутизатор — это одно и то же!

Из того, о чём говорилось только что, следует достаточно ясный вывод. Маршрутизатор с адресом интерфейса 192.168.8.1 ничего не знает о трафике, передаваемом, например, между хостами 192.168.8.5 и 192.168.8.7.

У начинающих администраторов одна из самых типичных ошибок — желание заблокировать или как-то иначе проконтролировать с помощью шлюза трафик между хостами в одной подсети. На самом деле, чтобы трафик проходил через маршрутизатор, адресат и отправитель должны находиться в разных подсетях.

А отсюда следует, что в сети даже самого маленького предприятия должно быть несколько IP-подсетей (больше двух) и маршрутизатор (точнее, файрвол, но сейчас можно считать эти слова синонимами), который маршрутизирует и контролирует трафик между подсетями.

Важный следующий шаг: разбиение подсетей на более мелкие подсети.

Сеть из нашего примера 192.168.8.0/21 можно разбить на две подсети /22, четыре подсети /23, восемь /24 и так далее. Общее правило, как можно догадаться, такое:

при этом K — количество подсетей с длиной маски Y, которые умещаются в подсеть с длиной маски X.

Любой приличный айтишник, включая сетевого администратора, должен знать наизусть степени двойки от нуля до 16. Просто для того, чтобы не стыдно было получать зарплату.

Есть такой процесс, называемый агрегацией. Это значит объединение мелких префиксов — с длинной маской подсети, в которых мало хостов — в крупные, с короткой маской подсети, в которых много хостов. Второе название этого же процесса — суммаризация. Запомните, не суммирование!

Агрегация необходима, чтобы минимизировать количество информации, которую использует маршрутизатор для поиска пути передачи в сети.

Пример: провайдеры выдают клиентам множество маленьких блоков по типу /29. При этом весь остальной Интернет об этом даже не подозревает. За каждым провайдером закреплены префиксы намного крупнее — от /19 и выше. Благодаря такой системе в Глобальную таблицу Интернет-маршрутизации заносится намного меньше записей: их число сократилось на несколько порядков.

Составление адресного плана.

Мы помним, что * маска IP-адреса* бывает разной длины. Чем больше длина маски, тем меньше хостов может быть в подсети. Одновременно увеличивается доля «съеденных» адресов на адреса подсети, шлюза по умолчанию и направленного бродкаста.

Пример. Подсеть с маской /29 (232-29 = 8 комбинаций). Здесь остаётся всего пять доступных для реального использования адресов, в процентах это будет 62,5%. Легко поставить себя на место провайдера, которому необходимо выдать тысячам корпоративных клиентов блоки /29. Для него грамотная разбивка IP-пространства на подсети жизненно необходима.

Эту науку ещё называют составлением адресного плана. Каждый, кто разбивает IP-пространство на подсети, должен уметь не только видеть и учитывать множество факторов, но и искать разумные компромиссы.

Если используется большой диапазон адресов, удобно работать с масками, совпадающими по длине с границами октетов.

Пример. Адреса из блоков частного сектора: 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16.

* Маска IP-адреса*: /8, /16, /24 или, соответственно, по-другому 255.0.0.0, 255.255.0.0, 255.255.255.0.

Такой подход серьёзно облегчает работу мозга и снижает нагрузку на калькулятор: не надо постоянно переходить на двоичную систему и биты. Ничего плохого в этом методе нет. Кроме одного: возможности чересчур сильно расслабиться. и наделать ошибок.

Итоги по маске IP-адреса.

Само понятие «классы адресов», о котором нет-нет да и приходится читать/слышать, давно устарело. Уже больше 20 лет назад выяснилось, что длина префикса может быть любой. Если же раздавать адреса блоками по /8, то никакого Интернета не получится. Итак: «классов адресов» не существует!

Другой, мягко говоря, странный термин. Иногда говорят «сеть класса такого-то» по отношению к подсети с той или иной длиной маски. Например, «сеть класса C» про 10.1.2.0/24. или что-то подобное. Знайте, так никогда не скажет серьёзный специалист. Класс сети, когда он ещё существовал, не имел отношения к длине маски и определялся совсем другими факторами — а именно комбинациями битов в адресе. Если классовая адресация использовалась, то длина масок тоже была строго регламентирована. Каждому классу соответствовали маски только строго определённой длины. Хотя бы поэтому подсеть 10.1.2.0/24, как в примере, никогда не принадлежала и не могла принадлежать к классу C.

Но лучше об этом не вспоминать. Важно только вот что. «Под одной крышей» в RFC3330 собраны все существующие глобальные конвенции, которые посвящены специальным значениям разнообразных блоков адресов.

В них блоки 10/8, 172.16/12 и 192.168/16 (написание сокращённое) определяются как диапазоны для частного использования, запрещённые к маршрутизации в интернете. Другими словами, каждый может использовать их по своему усмотрению, в частных целях.

Пусть вас не удивляет способ написания префиксов, когда полностью отбрасывается хостовая часть: он широко применяется и не вызывает разночтений или недоразумений.

Далее, блок 224.0.0.0/4 зарезервирован для мультикаста, и так далее. Но конвенции — это не совсем законы в полном юридическом смысле слова. Их цель — сделать проще и легче административное взаимодействие. Конвенции крайне не рекомендуется нарушать, но до поры до времени никем не запрещено использовать любые адреса для любых целей. Ровно до того момента, пока вы не встречаетесь с внешним миром

Источник

Таблица соответствия масок подсетей

Соответствия десятичных и коротких масок можно рассчитать или посмотреть в консольной утилите ipcalc (*nix и *BSD системы) – как ей пользоваться, читайте в следующей статье. Скачать калькулятор сетей и масок, можно в по этой ссылке.

Читайте также:  Таблица кос и син круг

Короткая маска подсети показывает, сколько битов из 32-битного адреса IPv4 отводится под адреса сети. Соответственно, количество доступных адресов хостов можно получить, возведя число 2 в степень, равную количеству битов, оставшихся на хосты. Десятичную маску можно получить, последовательно вычитая количество хостов из числа 255, начиная с последнего октета.

Некоторые маски подсетей коротком и десятичном формате и количество доступных адресов:

Слэш-формат Десятичный формат Доступные адреса
/32 255.255.255.255 1
/31 255.255.255.254 2
/30 255.255.255.252 4
/29 255.255.255.248 8
/28 255.255.255.240 16
/27 255.255.255.224 32
/26 255.255.255.192 64
/25 255.255.255.128 128
/24 255.255.255.0 256
/23 255.255.254.0 512
/22 255.255.252.0 1 024
/21 255.255.248.0 2 048
/20 255.255.240.0 4 096
/19 255.255.224.0 8 192
/18 255.255.192.0 16 384
/17 255.255.128.0 32 768
/16 255.255.0.0 65 536
/15 255.254.0.0 131 072
/14 255.252.0.0 262 144
/13 255.248.0.0 524 288
/12 255.240.0.0 1 048 576
/11 255.224.0.0 2 097 152
/10 255.192.0.0 4 194 304
/9 255.128.0.0 8 388 608
/8 255.0.0.0 16 777 216
/7 254.0.0.0 33 554 432
/6 252.0.0.0 67 108 864
/5 248.0.0.0 134 217 728
/4 240.0.0.0 268 435 456
/3 224.0.0.0 536 870 912
/2 192.0.0.0 1 073 741 824
/1 128.0.0.0 2 147 483 646
/0 0.0.0.0 4 294 967 296

Таблица соответствия десятичных масок коротким

Десятичный формат Слэш-формат Доступные адреса
255.255.255.0 /24 256
255.255.255.128 /25 128
255.255.255.192 /26 64
255.255.255.224 /27 32
255.255.255.240 /28 16
255.255.255.248 /29 8
255.255.255.252 /30 4
255.255.255.254 /31 2
255.255.255.255 /32 1

Таблица соответствия коротких масок десятичным, шестнадцатеричным и двоичным

Слэш Десятичный Шестнадцатеричный Двоичный
/0 0.0.0.0 0x00000000 00000000 00000000 00000000 00000000
/1 128.0.0.0 0x80000000 10000000 00000000 00000000 00000000
/2 192.0.0.0 0xc0000000 11000000 00000000 00000000 00000000
/3 224.0.0.0 0xe0000000 11100000 00000000 00000000 00000000
/4 240.0.0.0 0xf0000000 11110000 00000000 00000000 00000000
/5 248.0.0.0 0xf8000000 11111000 00000000 00000000 00000000
/6 252.0.0.0 0xfc000000 11111100 00000000 00000000 00000000
/7 254.0.0.0 0xfe000000 11111110 00000000 00000000 00000000
/8 255.0.0.0 0xff000000 11111111 00000000 00000000 00000000
/9 255.128.0.0 0xff800000 11111111 10000000 00000000 00000000
/10 255.192.0.0 0xffc00000 11111111 11000000 00000000 00000000
/11 255.224.0.0 0xffe00000 11111111 11100000 00000000 00000000
/12 255.240.0.0 0xfff00000 11111111 11110000 00000000 00000000
/13 255.248.0.0 0xfff80000 11111111 11111000 00000000 00000000
/14 255.252.0.0 0xfffc0000 11111111 11111100 00000000 00000000
/15 255.254.0.0 0xfffe0000 11111111 11111110 00000000 00000000
/16 255.255.0.0 0xffff0000 11111111 11111111 00000000 00000000
/17 255.255.128.0 0xffff8000 11111111 11111111 10000000 00000000
/18 255.255.192.0 0xffffc000 11111111 11111111 11000000 00000000
/19 255.255.224.0 0xffffe000 11111111 11111111 11100000 00000000
/20 255.255.240.0 0xfffff000 11111111 11111111 11110000 00000000
/21 255.255.248.0 0xfffff800 11111111 11111111 11111000 00000000
/22 255.255.252.0 0xfffffc00 11111111 11111111 11111100 00000000
/23 255.255.254.0 0xfffffe00 11111111 11111111 11111110 00000000
/24 255.255.255.0 0xffffff00 11111111 11111111 11111111 00000000
/25 255.255.255.128 0xffffff80 11111111 11111111 11111111 10000000
/26 255.255.255.192 0xffffffc0 11111111 11111111 11111111 11000000
/27 255.255.255.224 0xffffffe0 11111111 11111111 11111111 11100000
/28 255.255.255.240 0xfffffff0 11111111 11111111 11111111 11110000
/29 255.255.255.248 0xfffffff8 11111111 11111111 11111111 11111000
/30 255.255.255.252 0xfffffffc 11111111 11111111 11111111 11111100
/31 255.255.255.254 0xfffffffe 11111111 11111111 11111111 11111110
/32 255.255.255.255 0xffffffff 11111111 11111111 11111111 11111111

Нашли ошибку в тексте? Выделите фрагмент текста и нажмите Ctrl+Enter

Источник

Таблица подсетей различной ёмкости для IPv4

11 сентября 2013 г.

IP-адрес — это массив битов. Принцип IP-адресации — выделение диапазона IP-адресов, в котором некоторые битовые разряды имеют фиксированные значения, а остальные разряды пробегают все возможные значения. Блок адресов задаётся указанием начального адреса и маски подсети. Бесклассовая адресация основывается на переменной длине маски подсети (англ. variable length subnet mask, VLSM), в то время, как в классовой (традиционной) адресации длина маски строго фиксирована 0, 1, 2 или 3 установленными октетами.

Маски и размеры подсетей

Количество адресов подсети не равно количеству возможных узлов. Нулевой IP-адрес резервируется для идентификации подсети, последний — в качестве широковещательного адреса. Таким образом, в реально действующих сетях возможно количество узлов на два меньшее количества адресов.

Зарезервированные адреса

Некоторые адреса IPv4 зарезервированы для специальных целей и не предназначены для глобальной маршрутизации.

Подсеть Назначение
0.0.0.0/8 Адреса источников пакетов «этой» («своей») сети, предназначены для локального использования на хосте при создании сокетов IP. Адрес 0.0.0.0/32 используется для указания адреса источника самого хоста.
10.0.0.0/8 Для использования в частных сетях.
127.0.0.0/8 Подсеть для коммуникаций внутри хоста (см.: localhost).
169.254.0.0/16 Канальные адреса; подсеть используется для автоматического конфигурирования адресов IP в случае отсутствия сервера DHCP.
172.16.0.0/12 Для использования в частных сетях.
100.64.0.0/10 Для использования в сетях сервис-провайдера.
192.0.0.0/24 Регистрация адресов специального назначения.
192.0.2.0/24 Для примеров в документации.
192.168.0.0/16 Для использования в частных сетях.
198.51.100.0/24 Для примеров в документации.
198.18.0.0/15 Для стендов тестирования производительности.
203.0.113.0/24 Для примеров в документации.
240.0.0.0/4 Зарезервировано для использования в будущем.
255.255.255.255 Ограниченный широковещательный адрес.

Зарезервированные адреса, которые маршрутизируются глобально.

Источник

Вся таблица масок подсети

Браузер: Chrome 18

Маски подсети

Справочник по сетевым маскам и соответствующим им CIDR-диапазонам, количеству IP адресов и количеству подсетей или хостов.

Маски подсетей и CIDR-диапазоны

Сетевая маска Инверсия CIDR-диапазон Используется Размер
0.0.0.0 255.255.255.255 /0 4,294,967,294 весь интернет
128.0.0.0 127.255.255.255 /1 2,147,483,646 128 классов A
192.0.0.0 63.255.255.255 /2 1,073,741,822 64 класса A
224.0.0.0 31.255.255.255 /3 536,870,910 32 класса A
240.0.0.0 15.255.255.255 /4 268,435,454 16 классов A
248.0.0.0 7.255.255.255 /5 134,217,726 8 классов A
252.0.0.0 3.255.255.255 /6 67,108,862 4 класса A
254.0.0.0 1.255.255.255 /7 33,554,430 2 класса A
255.0.0.0 0.255.255.255 /8 16,777,214 1 класс A
255.128.0.0 0.127.255.255 /9 8,388,606 128 классов B
255.192.0.0 0.63.255.255 /10 4,194,302 64 класса B
255.224.0.0 0.31.255.255 /11 2,097,150 32 класса B
255.240.0.0 0.15.255.255 /12 1,048,574 16 классов B
255.248.0.0 0.7.255.255 /13 524,286 8 классов B
255.252.0.0 0.3.255.255 /14 262,142 4 класса B
255.254.0.0 0.1.255.255 /15 131,070 2 класса B
255.255.0.0 0.0.255.255 /16 65,534 1 класс B
255.255.128.0 0.0.127.255 /17 32,766 128 классов C
255.255.192.0 0.0.63.255 /18 16,382 64 класса C
255.255.224.0 0.0.31.255 /19 8,190 32 класса C
255.255.240.0 0.0.15.255 /20 4,094 16 классов C
255.255.248.0 0.0.7.255 /21 2,046 8 классов C
255.255.252.0 0.0.3.255 /22 1,022 4 класса C
255.255.254.0 0.0.1.255 /23 510 2 классов C
255.255.255.0 0.0.0.255 /24 254 1 класс C
255.255.255.128 0.0.0.127 /25 126 128 хостов
255.255.255.192 0.0.0.63 /26 62 64 хоста
255.255.255.224 0.0.0.31 /27 30 32 хоста
255.255.255.240 0.0.0.15 /28 14 16 хостов
255.255.255.248 0.0.0.7 /29 6 8 хостов
255.255.255.252 0.0.0.3 /30 2 4 хоста
255.255.255.254 0.0.0.1 /31 2 хоста
255.255.255.255 0.0.0.0 /32 1 1 С…РѕСЃС‚

Все отправленные вами запросы и ваш IP адрес сохраняются в журнале.

Источник

IP-адрес и маска подсети

IP-адреса используются для идентификации устройств в сети. Для взаимодействия c другими устройствами по сети IP-адрес должен быть назначен каждому сетевому устройству — компьютерам, серверам, маршрутизаторам, принтерам и т.д. С помощью маски подсети определяется максимально возможное число хостов в конкретной сети.

Знакомство с IP-адресами

Одна часть IP-адреса представляет собой адрес сети, другая — адрес хоста внутри этой сети. Адрес сети используется маршрутизаторами (роутерами) для передачи пакетов в нужные сети, тогда как адрес хоста определяет конкретное устройство в этой сети, которому должны быть доставлены пакеты.

Структура IP-адреса

IP-адрес состоит из четырех частей, записанных в виде десятичных чисел с точками (например, 192.168.1.2). Каждую из этих четырех частей называют октетом. Октет представляет собой восемь двоичных цифр (например, 11000000, или 192 в десятичном виде). Таким образом, каждый октет может принимать в двоичном виде значения от 00000000 до 11111111, или от 0 до 255 в десятичном виде.

Количество двоичных цифр в IP-адресе, которые приходятся на адрес сети, и количество цифр в IP-адресе, приходящееся на адрес хоста, могут быть различными в зависимости от маски подсети.

Частные IP-адреса

У каждого хоста в сети Интернет должен быть уникальный адрес. Если сеть изолирована от Интернета (например, связывают два филиала компании), для хостов можно использовать любые IP-адреса. Однако, уполномоченной организацией по распределению нумерации в сети Интернет (IANA) специально для частных сетей зарезервированы следующие три блока IP-адресов:

  • 10.0.0.0 — 10.255.255.255
  • 172.16.0.0 — 172.31.255.255
  • 192.168.0.0 — 192.168.255.255

Маски подсети

Маска подсети используется для определения того, какие биты являются частью адреса сети, а какие — частью адреса хоста (для этого применяется логическая операция «И»). Маска подсети включает в себя 32 бита. Если бит в маске подсети равен 1, то соответствующий бит IP-адреса является частью адреса сети. Если бит в маске подсети равен 0, то соответствующий бит IP-адреса является частью адреса хоста.

IP-адрес (десятичный) 192 168 1 2
IP-адрес (двоичный) 11000000 10101000 00000001 00000010
Маска подсети (десятичная) 255 255 255
Маска подсети (двоичная) 11111111 11111111 11111111 00000000
Адрес сети (десятичный) 192 168 1
Адрес сети (двоичный) 11000000 10101000 00000001
Адрес хоста (десятичный) 2
Адрес хоста (двоичный) 00000010

Маски подсети всегда состоят из серии последовательных единиц, начиная с самого левого бита маски, за которой следует серия последовательных нулей, составляющих в общей сложности 32 бита.

1-ый октет 2-ой октет 3-ий октет 4-ый октет Десятичная
8-битная маска 11111111 00000000 00000000 00000000 255.0.0.0
16-битная маска 11111111 11111111 00000000 00000000 255.255.0.0
24-битная маска 11111111 11111111 11111111 00000000 255.255.255.0
30-битная маска 11111111 11111111 11111111 11111100 255.255.255.252

Размер сети

Количество разрядов в адресе сети определяет максимальное количество хостов, которые могут находиться в такой сети. Чем больше бит в адресе сети, тем меньше бит остается на адрес хоста в адресе.

  • IP-адрес с адресом хоста из всех нулей представляет собой IP-адрес сети (например 192.168.1.0/24).
  • IP-адрес с адресом хоста из всех единиц представляет собой широковещательный адрес данной сети (например 192.168.1.255/24).

Так как такие два IP-адреса не могут использоваться в качестве идентификаторов отдельных хостов, максимально возможное количество хостов в сети вычисляется следующим образом:

Маска подсети Размер адреса хоста Макс. кол-во хостов
255.0.0.0 (8 бит) 24 бит 16777214 (2 24 — 2)
255.255.0.0 (16 бит) 16 бит 65534 (2 16 — 2)
255.255.255.0 (24 бит) 8 бит 254 (2 8 — 2)
255.255.255.252 (30 бит) 2 бит 2 (2 2 — 2)

Формат записи

Поскольку маска всегда является последовательностью единиц слева, дополняемой серией нулей до 32 бит, можно просто указывать количество единиц, а не записывать значение каждого октета. Обычно это записывается через слеш после адреса и количество единичных бит в маске.

Например, адрес 192.1.1.0/25 представляет собой адрес 192.1.1.0 с маской 255.255.255.128. Некоторые возможные маски подсети в обоих форматах показаны в следующей таблице.

Маска подсети Альтернативный формат Размер адреса хоста Макс. кол-во хостов
255.255.255.0 xxx.xxx.xxx.xxx/24 8 бит 254
255.255.255.128 xxx.xxx.xxx.xxx/25 7 бит 126
255.255.255.192 xxx.xxx.xxx.xxx/26 6 бит 62
255.255.255.224 xxx.xxx.xxx.xxx/27 5 бит 30
255.255.255.240 xxx.xxx.xxx.xxx/28 4 бит 14
255.255.255.248 xxx.xxx.xxx.xxx/29 3 бит 6
255.255.255.252 xxx.xxx.xxx.xxx/30 2 бит 2

Формирование подсетей

С помощью подсетей одну сеть можно разделить на несколько. В приведенном ниже примере администратор сети создает две подсети, чтобы изолировать группу серверов от остальных устройств в целях безопасности.

В этом примере сеть компании имеет адрес 192.168.1.0. Первые три октета адреса (192.168.1) представляют собой адрес сети, а оставшийся октет — адрес хоста, что позволяет использовать в сети максимум 2 8 — 2 = 254 хостов.

Чтобы разделить сеть 192.168.1.0 на две отдельные подсети, нужно «позаимствовать» один бит из адреса хоста. В этом случае маска подсети станет 25-битной (255.255.255.128 или /25). «Одолженный» бит адреса хоста может быть либо нулем, либо единицей, что дает нам две подсети: 192.168.1.0/25 и 192.168.1.128/25.

Сеть A Сеть B
IP-адрес подсети 192.168.1.0/25 192.168.1.128/25
Маска подсети 255.255.255.128 255.255.255.128
Широковещательный адрес 192.168.1.127 192.168.1.255
Минимальный IP-адрес хоста 192.168.1.1 192.168.1.129
Максимальный IP-адрес хоста 192.168.1.126 192.168.1.254

Четыре подсети

В предыдущем примере было показано использование 25-битной маски подсети для разделения 24-битного адреса на две подсети. Аналогичным образом для разделения 24-битного адреса на четыре подсети потребуется «одолжить» два бита идентификатора хоста, чтобы получить четыре возможные комбинации (00, 01, 10 и 11). Маска подсети состоит из 26 бит (11111111.11111111.11111111.11000000), то есть 255.255.255.192.

Каждая подсеть содержит 6 битов адреса хоста, что в сумме дает 2 6 — 2 = 62 хоста для каждой подсети (адрес хоста из всех нулей — это сама подсеть, а из всех единиц — широковещательный адрес для подсети).

Источник

Adblock
detector