Меню

Уголь элемент таблицы менделеева

Уголь элемент таблицы менделеева

углерод

Содержание:

Углерод – важнейший химический элемент периодической таблицы Менделеева. Без него, как и без кислорода и водорода немыслимой была бы сама Жизнь. Можно без преувеличения сказать, что жизнь всех живых существ от амебы до человека построена именно из соединений углерода. Углерод – биогенный элемент составляющий основу жизни на нашей планете. Будучи структурной единицей огромного числа различных органических соединений, он участвует и в построении живых организмов и в обеспечении их жизнедеятельности. Даже возникновение самой Жизни рассматривается учеными как сложный процесс эволюции углеродных соединений. А какие химические и физические свойства этого чудесного элемента, история его открытие и современное применение в химии, читайте об этом далее.

История открытия углерода

На самом деле углерод был известен человеку еще с глубокой древности в виде своих аллотропных модификаций: алмаза и графита. Помимо этого углерод в виде древесного угля активно применялся при выплавке металлов. От угля происходит и само название углерода, как химического элемента.

Но в те далекие времена люди пользовались углеродом в виде угля, или любовались им же, в виде алмазов, неосознанно, без понимания того, какой важный химический элемент стоит за всем этим.

Научное открытие углерода произошло в 1791 году, когда английский химик Теннант впервые получил свободный углерод. Для получения углерода он пропускал пары фосфора над прокаленным мелом. В результате этой химической реакции образовались фосфат кальция и чистый углерод. Впрочем, этому опыту предшествовали и другие искания, например выдающийся французский химик Лавуазье поставил опыт по сжиганию алмаза при помощи большой зажигательной машины. Драгоценный алмаз сгорел без остатка, после чего ученый пришел к выводу, что алмаз представляет собой ничто иное как кристаллический углерод.

алмаз

Интересно, что в этих опытах совместно с алмазом пробовали сжигать и другие драгоценные камни, к примеру, рубин. Но другие камни выдерживали высокую температуру, только алмаз сгорал без остатка, что и обратило внимание на его отличную химическую природу.

Углерод в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. Атомная масса углерода составляет 12,011, согласно ней он занимает почетное 6-е место в таблице Менделеева и обозначается латинской литерой С.

Помимо этого следует обратить внимание на следующие характеристики углерода:

  • Природный углерод состоит из смеси двух стабильных изотопов 12 С (98,892%) и 13 С (1,108%)
  • Помимо этого известно 6 радиоактивных изотопов углерода. Один из них, изотоп 14 С с периодом полураспада 5,73*10 3 лет в небольших количествах образуется в верхних слоях атмосферы нашей планеты под действием космического излучения.

Строение атома углерода

Атом углерода имеет 2 оболочки (как впрочем, и все элементы, расположенные во втором периоде) и 6 электронов: 1s 2 2s 2 2p 2 . Четыре валентных электрона находятся на внешнем электронном уровне атома углерода. А оставшиеся два электрона находятся на отдельных p-орбиталях, при этом они являются неспаренными.

Строение атома углерода

Так на картинке изображена схема электронного строения атома углерода.

Физические свойства углерода

Своими физическими свойствами углерод типичный неметалл. При этом он образует множество аллотропных модификаций («аллотропные» означает существование двух и более разных веществ из одного химического элемента): наиболее популярными из них являются алмаз, графит, уголь, сажа. При этом алмаз – одно из самых твердых веществ, представляющих углерод.

Разумеется, разные аллотропные модификации углерода имеют и разные физические свойства. Если алмаз типичное твердое тело, то, к примеру, жидкий углерод, который можно получить только при определенном внешнем давлении, обладает совершенно иными физическими свойствами, нежели алмаз или графит.

Аллотропные модификации углерода

Химические свойства углерода

В обычных условиях углерод, как правило, химически инертен, но при высоких температурах он может вступать в химические взаимодействия со многими другими элементами, обычно проявляя сильные восстановительные свойства. Приведем примеры химических реакций углерода как восстановителя с:

— с кислородом
C 0 + O2 – t° = CO2 углекислый газ

при недостатке кислорода — неполное сгорание:
2C 0 + O2 – t° = 2C +2 O угарный газ

— с водяным паром
C 0 + H2O – 1200° = С +2 O + H2 водяной газ

— с оксидами металлов. Таким образом, выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O2

— с серой образует сероуглерод:
С + 2S2 = СS2.

Порой углерод может выступать и как окислитель, образуя карбиды при вступлении в химические реакции с некоторыми металлами:

Ca + 2C 0 = CaC2 -4

Вступая в реакцию с водородом, углерод образует метан:

Углерод в природе

В земной коре содержание углерода составляет всего лишь 0,15%. Несмотря на эту кажущуюся маленькой цифру, стоит заметить, что углерод непрерывно участвует в природном круговороте из земной коры через биосферу в атмосферу и наоборот. Также именно из углерода состоят такие ценные ресурсы как нефть, уголь, торф, известняки и природный газ. И как мы писали в начале нашей статьи, углерод – основа жизни. Скажем, в теле взрослого человека с весом в 70 кг имеется около 13 кг углерода. Это только в одном человека, примерно в таких же пропорциях углерод содержится в телах всех других живых существ, растений и животных.

круговорот углерода в природе

Применение углерода

Можно сказать, что углерод неразрывно связан с самим развитием человеческой цивилизации. Именно из соединений с участием углерода образованы основные топлива, благодаря которым ездят машины, летают самолеты, вы можете приготовить себе еду и обогреть свой дом в холодную пору – это нефть и газ. Помимо этого соединения углерода активно используются в химической и металлургической промышленности, в фармацевтике и строительстве. Алмазы, будучи аллотропной модификацией углерода используются в ювелирном деле и ракетостроении. В целом промышленность современности не может обойтись без углерода, он необходим практически везде.

применение углерода

Рекомендованная литература и полезные ссылки

  • Savvatimskiy, A (2005). “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003)”. Carbon. 43 (6): 1115–1142. doi:10.1016/j.carbon.2004.12.027
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
  • ChemNet. Углерод: история открытия элемента.
  • Лейпунский О. И. Об искусственных алмазах (рус.) // Успехи химии. — Российская академия наук, 1939. — Вып. 8. — С. 1519—1534.
  • Seal M. The effect of surface orientation on the graphitization of diamond. // Phis. Stat. Sol., 1963, v. 3, p. 658.

Углерод, видео

И в завершение образовательное видео по теме нашей статьи.

Источник



Углерод как химический элемент таблицы Менделеева

У Углерод является химическим элементом таблицы Менделеева с атомным номером 6 и условным обозначением C. Углерод является неметаллическим веществом с 4 свободными электронами 14-ой группы периодической таблицы.

  • Как был открыт Углерод;
  • Где и как добывают Углерод;
  • Распространенность Углерода;
  • Применение Углерода;
  • Интересные факты

Как был открыт углерод

Углерод в виде графита

Такой химический элемент как углерод был известен людям еще с доисторических времен. Вероятно, он является самым древним химическим элементом, который известен людям. Этот элемент был известен доисторическим людям в форме золы и древесного угля. Об известности алмазов судить сложно, но есть вероятность того, что он был известен в Китае приблизительно в 2500 году до нашей эры. Есть сведения, что получение чистого углерода было уже во времена Римской империи. Его производство было такое же как и сейчас: нагревали дрова в пирамиде покрытой глиной, удалив воздух.

В 1722 году Рене Антуан Фершо де Реомюр продемонстрировал то, что железо превратилось в сталь в результате поглощения какого-то вещества, которое на сегодняшний день известно как углерод. Антуан Лавуазье в свою очередь доказал, что алмаз является одной из форм углерода в 1772 году. Он сжег образцы угля и алмаза у обнаружил, что ни один не образует воды и оба выпускают одинаковое количество углекислого газа.

В 1779 году Карл Вильгельм Шееле доказал, что графит является идентичным древесному углю, а не свинцу как предполагали в то время. Единственным отличием от древесного угля являлась небольшая примесь железа. В 1786 году французские ученые Клод Луи Бертолье, Гаспар Монж и К.А. Вандермонд подтвердили, что графит являлся в большей части является углеродом. Они окисляли графит кислородом почти как Лавуазье с алмазом. В публикации своего открытия ученые предложили элементу название «carbonum». Антуан Лавуазье, в своем учебнике 1789 года, перечислил углерод как отдельный элемент с таким названием. В дальнейшем открывались только новые аллотропы углерода.

Читайте также:  Таблица температура земной коры

Где и как добывают углерод

Углерод в виде Алмаза в руде

Углерод как химический элемент содержится в природе исключительно в виде соединений. Основными экономически важными углеродными соединениями являются графит и алмаз.

Распространенность графита в природе достаточно велика. Основнымти странами, которые приуспели в добыче графита являются Китай, Индия, Бразилия и Северная Корея. Графит обычно обнаруживается в связи с кварцем, слюдой полевыми штапами в песчаниках и известняках в виде жил и линз толщиной в 1 метр. На сегодняшний день классификация графита дробится на три части: аморфный, чешуйчатый и кусковой. Аморфный графит является самым распространенным, но с самым низким качеством и самым дешевым. Этот вид графита используется для изделий с низкой стоимостью. Крупные залежи аморфного гранита имеются в Китае, Европе, Мексике и США.

Чешуйчатый графит является более редким и более качественным по сравнению с аморфным. Его извлекают из горных попод в виде пластин. Чешуйчатый графит, обычно, раза в 4 дороже чем аморфный. Основные месторождения этой разновидности находятся в Австрии, Бразилии, Канаде, Китае, Германии и на острове Мадагаскар.

Кусковой графит является самым ценным, самым редким и качественным видом природного графита. Он был найден в жилах интрузивных контактов в твердых породах. Единственное место в мире, где его добывают является Шри-Ланка.

Еще одним экономически важным углеродным соединением является алмаз. Он является редким и очень ценным аллотропом углерода. Алмазы добываются из алмазной руды, но в самой руде не каждый камень является алмазом. Россия является лидером по производству алмазов, как драгоценных камней, в мире. К сведению один карат, а он равняется 0.2 грамма, оценивается приблизительно в 90$ США.

Распространенность углерода

Графитовая руда

Углерод является довольно распространенным химическим элементом. Если говорить про вселенский масштаб, то можно отметить, что он занимает почетное 4 место в распространенности по массе. Его опережают только водород, гелий и кислород. Что же касается земной коры, он занимает 15 место в списке самых распространенных элементов. Если брать человеческий организм, как масштаб распространенности, то углерод занимает второе место после кислорода и составляет около 18%. Как уже говорилось выше, углерод на нашей планете не встречается в свободной форме. Он встречается в природе в виде различных соединений, причем этих соединений огромное множество. Углерод является неотъемлемой частью жизни на Зелмле. Основными формами углеродосодержащих элементов являются твердые аллотропы, известняки, доломиты и углекислый газ. Большая часть углеродосодержащих элементов приходится на месторождение угля, нефти, торфа и природного газа.

Применение углерода

Графитовый стержень для карандаша

Углерод необходим для всех известных живых систем, и без него жизнь, как мы знаем, не могла бы существовать. Разнообразие его применения наверное самое большое из всех элементов таблицы Менделеева. Основное экономическое использование углерода, кроме продовольствия и древесины, приходится на природные углеводороды. К ним относится ископаемое топливо, природный газ и нефть. Углерод входит в состав почти всех повседневных вещей жизнедеятельности человека. К примеру все пластмассовые и металлические изделия, а так же шерсть, кашемир, шелк и многое другое. Сажа входит состав красок для печатных устройств. Углерод содержится во многих медицинских препаратах, самый яркий пример активированный уголь. Углерод является составной частью всех резиновых изделий. Кокс используется для превращения руды в железо, а обогащение углеродом делает из железа сталь. Поэтому все металлические предметы содержат атомы углерода. В ядерной промышленности углерод используется как замедлитель нейтронов, или изотоп углерода как топливо.

Интересные факты

Угольные пластины

Интересных фактов связанных с углеродом очень много. Все их перечислить просто невозможно. Стоит начатб с того что некоторые аллотропы углерода являеются рекордсменами. К примеру графит является одним из самых мягких веществ на планете, а алмаз является самым твердым веществом. Бриллиант «розовая звезда» является одним из самых дорогих камней в мире. В 2013 году его продали с аукциона за 83 миллиона долларов. Бриллиант является обработанной формой алмаза. При высокой температуре и давлении в бескислорлдном пространстве алмазы преобразуются в графит. Графит в свою очередь является хорошим смазывающим веществом. Плюс к этому, он хорошо проводит электричество.

В середине 40-х годов был обнаружен новый аллотроп углерода и назвали его «Графен», но получить его неудавалось целых 50 лет. Он обладает большой механической жесткостью и рекордно большой теплопроводностью. Предполагается, что это вещество заменит кремний в электрических приборах. За открытие метода получения графена и исследование этого вещества русские ученые Андрей Константинович Гейм и Константин Сергеевич Новоселов получили Нобелевскую премию в 2010 году. Метод получения графена был разработан в 2004 году, а реальные испытания в 2005. Возможно, графен станет «вторым дыханием» в области наноэлектроники.

Источник

Углерод

Uglerod +.png

Углерод встречается как:

Углерод (от лат. carbo — уголь; химический символ — C) — химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6, атомная масса 12,0107.

История

Углеро́д в виде древесного угля применялся в глубокой древности для выплавки металлов. Издавна известны алмаз и графит. Элементарная природа углерода установлена А. Лавуазье в конце 1780-х годов.

Происхождение названия

Международное название происходит от латинского carbo — уголь, связанного с древним корнем kar — огонь. Этот же корень в латинском cremare — гореть, а возможно, и в русском «гарь», «жар», «угореть» (в древнерусском «угорати» — обжигать, опалять). Отсюда — и «уголь».

Содержание

  • 1 История
    • 1.1 Происхождение названия
  • 2 Физические свойства
    • 2.1 Изотопы углерода
  • 3 Аллотропные модификации углерода
    • 3.1 Графит и алмаз
    • 3.2 Ультрадисперсные алмазы (наноалмазы)
    • 3.3 Карбин
    • 3.4 Фуллерены и углеродные нанотрубки
    • 3.5 Аморфный углерод
  • 4 Нахождение в природе
  • 5 Химические свойства
    • 5.1 Неорганические соединения
    • 5.2 Органические соединения
  • 6 Применение
  • 7 Токсическое действие
  • 8 См. также
  • 9 Ссылки
  • 10 Литература

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими и химическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа. Основные физические свойства собственно углерода смотри в таблице.

Изотопы углерода

Подробнее в статье изотопы углерода

Природный углерод состоит из двух стабильных нуклидов — 12 С (98,892 %) и 13 С (1,108 %)и одного радиоактивного нуклида 14 С (β-излучатель, Т½= 5730 лет), состредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14 N (n, p) 14 C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб.

На образовании и распаде 14 С основан метод радиоуглеродного датирования, широко применяющийся в четвертичной геологии и археологии.

Аллотропные модификации углерода

Упрощенная фазовая диаграмма углерода, заштрихованы области где аллотропные модификации могут быть метастабильны. (diamond — алмаз, graphite — графит, liquid — жидкость, vapor — газ)

  • графит
  • алмаз
  • карбин
  • лонсдейлит
  • фуллерены
  • углеродные нанотрубки
  • графен
  • аморфный углерод угольтехуглеродсажа

Электронное строение атома углерода

‎Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

  • тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp³-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными σ-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.
  • тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp²-гибридизация). Атом углерода имеет три равноценные σ-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости σ-связей, используется для образования π-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.
  • дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают π-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию — карбин.

Графит и алмаз

Элементарная ячейка (углерода) алмаза

Основные и хорошо изученные кристаллические модификации углерода — алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. При атмосферном давлении и температуре выше 1200 K алмаз начинает переходить в графит, выше 2100 K превращение совершается за секунды. ΔН перехода — 1,898 кДж/моль. При нормальном давлении углерод сублимируется при 3 780 K. Жидкий углерод существует только при определенном внешнем давлении. Тройные точки: графит-жидкость-пар Т = 4130 K, р = 12,5 ГПа. Прямой переход графита в алмаз происходит при 3000 K и давлении 11—12 ГПа.

Читайте также:  Таблица провод от мощности автозвук

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15—20 % выше плотности алмаза), имеющей металлическую проводимость. При высоких давлениях и относительно низких температурах (ок. 1 200 K) из высокоориентированного графита образуется гексагональная модификация углерода с кристаллической решеткой типа вюрцита — лонсдейлит (а = 0,252 нм, с = 0,412 нм, пространственная группа Р63/ттс), плотность 3,51 г/см³, т. е. такая же, как у алмаза. Лонсдейлит найден также в метеоритах.

Ультрадисперсные алмазы (наноалмазы)

В 1980-е гг. в СССР было обнаружено, что в условиях динамического нагружения углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы». Размер частиц в таких матералах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ с значительным отрицательным кислородным балансом, напрмер смесей тротила с гексогеном. Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф, уголь и пр.). Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Цепи имеют либо полиеновое строение (—C≡C—), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68—3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно — окислительной дегидрополиконденсацией ацетилена, действием лазерного излучения на графит, из углеводородов или ССl4 в низкотемпературной плазме.

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц С60, С70 и подобных (фуллерены), а также графенов и нанотрубок.

Аморфный углерод

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Нахождение в природе

Содержание углерода в земной коре 0,1 % по массе. Свободный углерод находится в природе в виде алмаза и графита. Основная масса углерода в виде природных карбонатов (известняки и доломиты), горючих ископаемых — антрацит (94—97 % С), бурые угли (64—80 % С), каменные угли (76—95 % С), горючие сланцы (56—78 % С), нефть (82—87 % С), горючих природных газов (до 99 % метана), торф (53—56 % С), а также битумы и др. В атмосфере и гидросфере находится в виде диоксида углерода СО2, в воздухе 0,046 % СО2 по массе, в водах рек, морей и океанов в

60 раз больше. Углерод входит в состав растений и животных (

18 %). Кругооборот углерода в природе включает биологический цикл, выделение СО2 в атмосферу при сгорании ископаемого топлива, из вулканических газов, горячих минеральных источников, из поверхностных слоев океанических вод и др. Биологический цикл состоит в том, что углерод в виде СО2 поглощается из тропосферы растениями. Затем из биосферы вновь возвращается в геосферу: с растениями углерод попадает в организм животных и человека, а затем при гниении животных и растительных материалов — в почву и в виде СО2 — в атмосферу.

В парообразном состоянии и в виде соединений с азотом и водородом углерод обнаружен в атмосфере Солнца, планет, он найден в каменных и железных метеоритах.

Большинство соединений углерода, и прежде всего углеводороды, обладают ярко выраженным характером ковалентных соединений. Прочность простых, двойных и тройных связей атомов С между собой, способность образовывать устойчивые цепи и циклы из атомов С обусловливают существования огромного числа углеродсодержащих соединений, изучаемых органической химией.

Химические свойства

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—500 °C, 600—700 °C и 850—1000 °C.

Степени окисления +4, −4, редко +2 (СО, карбиды металлов), +3 (C2N2, галогенцианы); сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С 0 к С 4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Неорганические соединения

Углерод реагирует со многими элементами с образованием карбидов.

Продукты горения — оксид углерода СО и диоксид СО2. Известен также неустойчивый оксид С3О2 (температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды. Графит и аморфный углерод начинают реагировать с Н2 при 1200 °C, с F2 — соответственно 900 °C, а при комнатной температуре CO2 с водой образует угольную кислоту — H2CO3 (CO2 (по массе %): 0,335 (0 °С); 0,169 (20 °С) частично взаимодействуя с водой образует угольную кислоту). [1] Она реагирует со многими металлами с образованием карбонатов. На Земле наиболее широко распространены карбонаты кальция и магния.

Графит с галогенами, щелочными металлами и др. веществами образует соединения включения. При пропускании электрического разряда между угольными электродами в среде N2 образуется циан, при высоких температурах взаимодействием углерода со смесью Н2 и N2 получают синильную кислоту. С серой углерод дает сероуглерод CS2, известны также CS и C3S2. С большинством металлов, бором и кремнием углерод образует карбиды. Важна в промышленности реакция углерода с водяным паром: С + Н2О = СО + Н2 (см. Газификация твердых топлив). При нагревании углерод восстанавливает оксиды металлов до металлов, что широко используется в металлургии.

Органические соединения

Благодаря способности углерода образовывать полимерные цепочки, существует огромный класс соединений на основе углерода, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия. Среди них наиболее обширные группы: углеводороды, белки, жиры и др.

Применение

Феррит (твердый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твердый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твердый раствор углерода в α-железе с объемно-центрированной терагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод — основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов(нефть, природный газ) — один из важнейших источников энергии для человечества.

Углерод в сталелитейной промышленности один из важнеших компонентов сплавов железо-углерод (производсво чугуна и стали).

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Кроме этого, ограненные алмазы — бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, алмаз неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м•К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области. В то же время определенные успехи в области выращивания алмазных пленок уже сейчас позволят говорить вполне серьёзно о смене «кремниевой эры» в микроэлектронике на «Алмазную эпоху» и в тысячи и десятки тысяч раз увеличить быстродействие ЭВМ, а в сочетании с нанотехнологиями и применением оптических способов управления такими процессорами поднять быстродействие от современного уровня свыше миллиарда раз (9—10 порядков!).

Читайте также:  Расчет диаметра трубопровода расчетные таблицы

Токсическое действие

Углерод входит в состав атмосферных аэрозолей, в результате чего может изменяться региональный климат, уменьшаться количество солнечных дней. Частицы углерода поглощают солнечное излучение, что может вызвать нагревание поверхности Земли. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС, при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100—400 мкг/м³, крупными городами 2,4—15,9 мкг/м³, сельскими районами 0,5 — 0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6—15)•10 9 Бк/сут 14 СО2.

Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких. Профессиональные заболевания — в основном антракоз и пылевой бронхит. В воздухе рабочей зоны ПДК, мг/м³: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³.

Токсическое действие 14 С, вошедшего в состав молекул белков (особенно в ДНК и РНК), определяется радиационным воздействием бета частиц и ядер отдачи азота ( 14 С (β) → 14 N) и трансмутационным эффектом — изменением химического состава молекулы в результате превращения атома С в атом N. Допустимая концентрация 14 С в воздухе рабочей зоны ДКА 1,3 Бк/л, в атмосферном воздухе ДКБ 4,4 Бк/л, в воде 3,0•10 4 Бк/л, предельно допустимое поступление через органы дыхания 3,2•10 8 Бк/год.

Источник

Углерод: физические и химические свойства

углерод

Содержание:

Углерод – важнейший химический элемент периодической таблицы Менделеева. Без него, как и без кислорода и водорода немыслимой была бы сама Жизнь. Можно без преувеличения сказать, что жизнь всех живых существ от амебы до человека построена именно из соединений углерода. Углерод – биогенный элемент составляющий основу жизни на нашей планете. Будучи структурной единицей огромного числа различных органических соединений, он участвует и в построении живых организмов и в обеспечении их жизнедеятельности. Даже возникновение самой Жизни рассматривается учеными как сложный процесс эволюции углеродных соединений. А какие химические и физические свойства этого чудесного элемента, история его открытие и современное применение в химии, читайте об этом далее.

История открытия углерода

На самом деле углерод был известен человеку еще с глубокой древности в виде своих аллотропных модификаций: алмаза и графита. Помимо этого углерод в виде древесного угля активно применялся при выплавке металлов. От угля происходит и само название углерода, как химического элемента.

Но в те далекие времена люди пользовались углеродом в виде угля, или любовались им же, в виде алмазов, неосознанно, без понимания того, какой важный химический элемент стоит за всем этим.

Научное открытие углерода произошло в 1791 году, когда английский химик Теннант впервые получил свободный углерод. Для получения углерода он пропускал пары фосфора над прокаленным мелом. В результате этой химической реакции образовались фосфат кальция и чистый углерод. Впрочем, этому опыту предшествовали и другие искания, например выдающийся французский химик Лавуазье поставил опыт по сжиганию алмаза при помощи большой зажигательной машины. Драгоценный алмаз сгорел без остатка, после чего ученый пришел к выводу, что алмаз представляет собой ничто иное как кристаллический углерод.

алмаз

Интересно, что в этих опытах совместно с алмазом пробовали сжигать и другие драгоценные камни, к примеру, рубин. Но другие камни выдерживали высокую температуру, только алмаз сгорал без остатка, что и обратило внимание на его отличную химическую природу.

Углерод в таблице Менделеева

В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. Атомная масса углерода составляет 12,011, согласно ней он занимает почетное 6-е место в таблице Менделеева и обозначается латинской литерой С.

Помимо этого следует обратить внимание на следующие характеристики углерода:

  • Природный углерод состоит из смеси двух стабильных изотопов 12 С (98,892%) и 13 С (1,108%)
  • Помимо этого известно 6 радиоактивных изотопов углерода. Один из них, изотоп 14 С с периодом полураспада 5,73*10 3 лет в небольших количествах образуется в верхних слоях атмосферы нашей планеты под действием космического излучения.

Строение атома углерода

Атом углерода имеет 2 оболочки (как впрочем, и все элементы, расположенные во втором периоде) и 6 электронов: 1s 2 2s 2 2p 2 . Четыре валентных электрона находятся на внешнем электронном уровне атома углерода. А оставшиеся два электрона находятся на отдельных p-орбиталях, при этом они являются неспаренными.

Строение атома углерода

Так на картинке изображена схема электронного строения атома углерода.

Физические свойства углерода

Своими физическими свойствами углерод типичный неметалл. При этом он образует множество аллотропных модификаций («аллотропные» означает существование двух и более разных веществ из одного химического элемента): наиболее популярными из них являются алмаз, графит, уголь, сажа. При этом алмаз – одно из самых твердых веществ, представляющих углерод.

Разумеется, разные аллотропные модификации углерода имеют и разные физические свойства. Если алмаз типичное твердое тело, то, к примеру, жидкий углерод, который можно получить только при определенном внешнем давлении, обладает совершенно иными физическими свойствами, нежели алмаз или графит.

Аллотропные модификации углерода

Химические свойства углерода

В обычных условиях углерод, как правило, химически инертен, но при высоких температурах он может вступать в химические взаимодействия со многими другими элементами, обычно проявляя сильные восстановительные свойства. Приведем примеры химических реакций углерода как восстановителя с:

— с кислородом
C 0 + O2 – t° = CO2 углекислый газ

при недостатке кислорода — неполное сгорание:
2C 0 + O2 – t° = 2C +2 O угарный газ

— с водяным паром
C 0 + H2O – 1200° = С +2 O + H2 водяной газ

— с оксидами металлов. Таким образом, выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O2

— с серой образует сероуглерод:
С + 2S2 = СS2.

Порой углерод может выступать и как окислитель, образуя карбиды при вступлении в химические реакции с некоторыми металлами:

Ca + 2C 0 = CaC2 -4

Вступая в реакцию с водородом, углерод образует метан:

Углерод в природе

В земной коре содержание углерода составляет всего лишь 0,15%. Несмотря на эту кажущуюся маленькой цифру, стоит заметить, что углерод непрерывно участвует в природном круговороте из земной коры через биосферу в атмосферу и наоборот. Также именно из углерода состоят такие ценные ресурсы как нефть, уголь, торф, известняки и природный газ. И как мы писали в начале нашей статьи, углерод – основа жизни. Скажем, в теле взрослого человека с весом в 70 кг имеется около 13 кг углерода. Это только в одном человека, примерно в таких же пропорциях углерод содержится в телах всех других живых существ, растений и животных.

круговорот углерода в природе

Применение углерода

Можно сказать, что углерод неразрывно связан с самим развитием человеческой цивилизации. Именно из соединений с участием углерода образованы основные топлива, благодаря которым ездят машины, летают самолеты, вы можете приготовить себе еду и обогреть свой дом в холодную пору – это нефть и газ. Помимо этого соединения углерода активно используются в химической и металлургической промышленности, в фармацевтике и строительстве. Алмазы, будучи аллотропной модификацией углерода используются в ювелирном деле и ракетостроении. В целом промышленность современности не может обойтись без углерода, он необходим практически везде.

применение углерода

Рекомендованная литература и полезные ссылки

  • Savvatimskiy, A (2005). “Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003)”. Carbon. 43 (6): 1115–1142. doi:10.1016/j.carbon.2004.12.027
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
  • ChemNet. Углерод: история открытия элемента.
  • Лейпунский О. И. Об искусственных алмазах (рус.) // Успехи химии. — Российская академия наук, 1939. — Вып. 8. — С. 1519—1534.
  • Seal M. The effect of surface orientation on the graphitization of diamond. // Phis. Stat. Sol., 1963, v. 3, p. 658.

Углерод, видео

И в завершение образовательное видео по теме нашей статьи.

Источник

Adblock
detector