Меню

Тепловой баланс таблица теплообменника



Тепловой баланс теплообменного аппарата и частные случаи.

где Q – мощность теплообменного аппарата, Вт; и – расход горячего и холодного теплоносителей соответственно, кг\с; и – удельное изменение энтальпии греющего и нагреваемого теплоносителей соответственно, Дж\кг.

где c pm 1 и c pm 2 – средние теплоемкости горячего и холодного теплоносителей; W 1=G 1c pm 1 и W 2=G 2c pm 2 – водяные эквиваленты горячего и холодного теплоносителей; ; (рис. 25).

59. Расчет теплообменных аппаратов первого и второго.

В зависимости от постановки задачи тепловой расчет теплообменных аппаратов может быть конструктивным (расчеты первого рода) или поверочными (расчеты второго рода).

При конструкторском тепловом расчете известны: скорость, плотность и температура теплоносителей на входе и на выходе из теплообменного аппарата, а также расходы теплоносителей. Определяют тепловую мощность и площади поверхности теплообменного аппарата, с дальнейшим конструированием нового или выбором стандартного аппарата.

Поверочный тепловой расчет выполняется в том случае, когда поверхность теплообмена и размеры теплообменного аппарата известны, а необходимо определить мощность теплообменного аппарата и температуры теплоносителей на выходе из теплообменника. При этом задаются температуры теплоносителей на входе в теплообменник и расходы теплоносителей.

В основу теплового расчета рекуперативных ТА положены: уравнение теплового баланса

и обобщенное уравнение теплопередачи при переменных температурах

где η – коэффициент, учитывающий тепловые потери в окружающую среду, η = 0,95 – 0,98;

Уравнения (238), (239) справедливы для всех типов рекуперативных ТА любого назначения [конвективные ТА (нагреватели, холодильники), испарители, конденсаторы и кристаллизаторы], но при этом тепловые потоки ( ) определяются для каждого из указанных типов рекуперативных ТА по различным расчетным соотношениям (табл. 1) [2, 4, 7, 8].

Коэффициент теплопередачи от горячего к холодному теплоносителю в рекуперативных ТА определяется по соотношению [2, 3]

где – коэффициенты теплоотдачи от горячего теплоносителя к стенке и от стенки к холодному теплоносителю, ; , – термические сопротивления загрязнений поверхности теплообменных труб со стороны горячего и холодного теплоносителей, ; – термическое сопротивление стенки теплообменной трубы, .

На первом этапе конструктивного теплового расчета ТА коэффициенты теплоотдачи от горячего теплоносителя к стенке и от стенки к холодному теплоносителю ( ) выбираются из справочных таблиц, а затем рассчитываются по критериальным уравнениям [2-5]. Значения термических сопротивлений загрязнений и стенки теплообменной трубы находятся по справочной литературе [3, 4, 7, 8].

Конструируемый или выбираемый стандартный теплообменный аппарат способен обеспечить заданные температурные режимы теплоносителей, если его индекс противоточности при заданных температурных режимах и водяных эквивалентах теплоносителей больше или равен минимальному индексу противоточности p min

Минимальный индекс противоточности ТА определяется только температуратурными режимами теплоносителей и находится по соотношению [1, 5]

где – температура горячего теплоносителя на входе и выходе ТА;

– температура холодного теплоносителя на входе и выходе ТА.

Действительная средняя разность температур между теплоносителями для рекуперативных ТА всех типов определяется по соотношению

где e D t – коэффициент, учитывающий различие между действительной средней разностью температур (Q m) и средней логарифмической разностью температур между теплоносителями при противоточной схеме движения теплоносителей (Q mL).

Cредняя логарифмическая разностью температур между теплоносителями для противоточной схемы их движения рассчитывается по уравнению Грасгофа [2, 5]

В одноходовых теплообменных аппаратах может осуществляться либо прямоточная, либо противоточная схема движения теплоносителей. Для прямоточной схемы индекс противоточности равен p = 0, а при противотоке –

Для более сложных схем определение индекса противоточности p выбранного теплообменного аппарата начинается с расчета характеристик, от которых, наряду со схемой движения теплоносителя, зависит значение индекса [2, 8, 9]

По значениям этих характеристик с учетом схемы движения теплоносителей (число ходов по трубному и межтрубному пространству) из графиков определяется коэффициент e D t (рис. 3, 4, 5) [2, 3, 8, 9].

После определения действительной средней разности температур между теплоносителями характеристическая разность температур DT находится с использованием метода последовательного приближения из следующего соотношения:

где Q ma – средняя арифметическая разность температур между теплоносителями в теплообменном аппарате,

Рис. 26. Зависимость ε Δ t от характеристик R и PS для двухходовых (по трубному пространству) кожухотрубных теплообменных аппаратов

Рис. 27. Зависимость ε Δ t от характеристик R и PS для четырехходовых (по трубному пространству) кожухотрубных теплообменных аппаратов

Рис. 28. Зависимость ε Δ t от характеристик R и PS для шестиходовых (по трубному пространству) кожухотрубных теплообменных аппаратов

Значение индекса противоточности для сконструированного или выбранной стандартного теплообменного аппарата при заданных температурных режимах и водяных эквивалентах теплоносителей определяется по уравнению Н.И. Белоконя для характеристической разности температур [1, 3]

Действительная тепловая мощность сконструированного или выбранного стандартного теплообменного аппарата рассчитывается по формуле Н.И. Белоконя [1, 5]

где W m – приведенный водяной эквивалент теплоносителей,

F ТА – площадь поверхности теплообмена теплообменного аппарата.

Действительные характеристики теплоносителей на выходе из теплообменного аппарата ( ) определяются из уравнения теплового баланса (1) (табл. 1).

Источник

Расчет теплообменника: методика, пример + ВИДЕО

В этой статье мы рассмотрим теорию расчета теплообменника пластинчатого типа:

  • Базовые понятия
  • Методы составления теплового баланса
  • Механизмы теплопередачи
  • Конвекционный механизм передачи тепла
  • Коэффициент теплоотдачи
  • Расчет средней разности температур
  • Пример расчета оборудования
  • Видео «Как рассчитать теплообменник?»
  • Онлайн калькулятор

Базовые понятия теплообмена для расчета

Расчет теплообменников производится при использовании базовой информации о теплообменных законах.

Читайте также:  Таблица проверки дмрв ваз

В этой статье рассмотрим некоторые понятия, применяемые при таких расчетах.

  • Удельная теплоемкость является количеством теплоэнергии, требуемой для того чтобы нагреть 1 килограмм вещества на 1 градус Цельсия. На основании сведений о теплоемкости показывается то, насколько сильно аккумулируется тепло. Для расчетов теплоэнергии берется среднее значение теплоемкости в определенном интервале температурных показателей.
  • Количество теплоэнергии, нужное для того чтобы нагреть 1 кг вещества от нулевой до требуемой температуры, называется удельной энтальпией.
  • Удельная теплота химических превращений является количеством теплоэнергии, выделяемой в процессе химической трансформации какой-либо единицы веса вещества.
  • Удельная теплота фазовых превращений определяет количество тепловой энергии, поглощаемое или выделяемое при превращении какой-либо единицы массы вещества из твердого в жидкое, из жидкого в газообразное агрегатное состояние и т.д.

Онлайн калькулятор расчета теплообменнника от компании ООО «Тепло Профи» поможет получить решение через 15 минут. Или вы можете воспользоваться теорией для теплообменника пластинчатого типа, которая изложена ниже в этой статье, и произвести необходимые расчеты самостоятельно.

Методы составления теплового баланса

Тепловой баланс может быть составлен внешним или внутренним методом. Первый связан с использованием величин удельных энтальпий, второй – с использованием величин теплоемкостей.

Для расчета тепловой нагрузки при внутреннем методе применяются различные формулы, что зависит от того, каким образом происходит протекание теплообменных процессов.

Если при теплообменном процессе не используются никакие превращения, а соответственно тепловые выделения или поглощения, рассчитать тепловую нагрузку можно за следующей формулой

Если при теплообменном процессе конденсируется пара или испаряется жидкость, протекают определенные химические реакции, тепловой баланс вычисляется по следующей формуле

Основанием для расчета теплового баланса в случае применения внешнего метода выступает факт поступления или выхода равного количества энергии в теплообменное устройство за определенную единицу времени. Внутренний метод отличается от внешнего тем, что при первом используются данные о процессах теплообмена, а при втором – данные внешних показателей.

Тепловой баланс по внешнему методу вычисляется таким образом:

Величина Q1 определяет количество энергии, поступающей в устройство и выходящей из него за единицу времени.

Для установления количества тепловой энергии, передающегося между различными средами, необходимо вычислить разницу энтальпий с использованием формулы

Теплообменный процесс может происходить и с использованием определенных химических или фазовых превращений. При этом количество тепловой энергии вычисляется за формулой

Механизмы теплопередачи в расчете теплообменников

Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.

При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.

Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье

Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.

Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.

Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.

Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:

После выполнения некоторых математических операций получаем следующую формулу

Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.

Конвекционный механизм передачи тепла

Конвекция является еще одним способом передачи теплоэнергии. Она представляет собой передачу энергии объемами среды посредством их взаимного перемещения. Теплопередачей при этом называется передача теплоэнергии между рабочей средой и стенкой. Определение количества передаваемой тепловой энергии связано с использованием закона Ньютона

,где a является коэффициентом теплоотдачи.

При турбулентном движении среды на изменение данного коэффициента влияют величины:

  • физические характеристики теплоемкости, плотности и иной текучей среды;
  • условия, при которых теплоотдающая поверхность омывается жидким или газообразным веществом;
  • условия, которыми ограничивается поток, такие как длина, поверхностные шероховатости и др.

Итак, коэффициент теплоотдачи является функцией некоторых величин, что можно увидеть по следующей формуле

Благодаря методу анализа размерностей может быть выведена взаимосвязь критериев подобия, которыми характеризуется теплоотдача при турбулентном движении потока в различной по форме трубах.

Для вычисления этой связи используется такая формула

Коэффициент теплоотдачи в расчете теплообменников

В химической технологии часто можно встретить случаи обмена теплом между 2-мя текучими средами через разделяющую стенку. Процесс теплообмена проходит в три этапа. Поток теплоэнергии для установившегося процесса характеризуется неизменностью.

Сначала рассчитывается тепловой поток, проходящий от одной среды к стенке, затем через стенку поверхности, передающей тепло, а после этого от стенки к другой рабочей среде.

Таким образом, расчеты проводятся с помощью трех формул

Результатом решения уравнений является формула

Расчет средней разности температур

Поверхность теплообмена рассчитывается при определении требуемого количества теплоэнергии посредством теплового баланса.

Читайте также:  Какие величины могут быть элементами таблицы информатика

Расчет требуемой теплообменной поверхности осуществляется с использованием той же формулы, что и при расчетах, осуществляемых раннее:

Температура рабочих сред, как правило, изменяется при протекании процессов, связанных с теплообменом. То есть будет фиксироваться изменение разности температур вдоль теплообменной поверхности. Следовательно, рассчитывается средняя разница температур. Вследствие нелинейности изменения температур осуществляется расчет логарифмической разности

Противоточное движение рабочих сред отличается от прямоточного тем, что требуемая площадь теплообменной поверхности в данном случае должна быть меньше. Для вычисления разности температурных показателей при использовании в одном и том же ходу теплообменника и противоточного, и прямоточного потоков используется следующая формула

Основная цель проведения расчета заключается в вычислении требуемой площади теплообменной поверхности. Тепловая мощность задается в техническом задании, но в нашем примере мы произведем и ее расчет с той целью, чтобы проверить само техзадание. В некоторых случаях бывает и так, что в исходной информации может оказаться ошибка. Нахождение и исправление такой ошибки является одной из задач грамотного инженера. Использование подобного подхода очень часто связано со строительство небоскрёбов с целью разгрузки оборудования по давлению.

Пример расчета теплообменника

Для расчета требуемой мощности ( Q0) используется формула теплового баланса. Здесь Ср выступает в качестве удельной теплоёмкости (табличного значения). Чтобы упростить расчеты, можно взять приведённый уровень теплоемкости

Следует учитывать, что в соответствии с формулой, вне зависимости от стороны, по которой проводится расчет.

Далее необходимо найти требуемую поверхностную площадь, исходя из основного уравнения теплопередачи, где k является коэффициентом теплопередачи, а ΔТср.лог. – среднелогарифмическим температурным напором, вычисляемым по формуле:

При неопределенном коэффициенте теплопередачи теплообменник пластинчатого типа рассчитывается более сложным методом. По формуле можно вычислить критерий Рейнольдса.

Найдя в таблице значение критерия Прандтля, которое нам необходимо, можно вычислить критерий Нуссельта формулы, где n = 0,3 – при охлаждении жидкости, n = 0,4 – при нагреве жидкости.

Далее на основании формулы можно вычислить коэффициент теплоотдачи от любого теплоносителя к стенке, а в соответствии с формулой определить коэффициент теплопередачи, подставляемый в формулу, с помощью которого вычисляется площадь поверхности теплообмена.

Источник

Базовые понятия теплообмена для расчета теплообменников

Когда проводится расчет теплообменников, используются базовые знания о законах теплообмена, открытые на сегодняшний день.

В частности используются такие понятия как удельная теплоемкость и теплосодержание (энтальпия), а также удельная теплота химических превращений (и фазовых превращений).

Под удельной теплоемкость понимается количество тепла, которое необходимо для нагрева одного килограмма вещества ровно на один градус. На основании данных о теплоемкости можно судить об интенсивности аккумулирования тепла.

При тепловых расчетах используются средняя теплоемкость, исчисляемую в заданном температурном интервале.

Под понятием удельной энтальпии понимается количество тепла, которое потребуется для нагрева одного килограмма от нуля до заданной температуры.

Под удельной теплотой химических превращений понимается то количество тепла, которое будет выделяться при химической трансформации одной единицы массы данного вещества.

Под удельной теплотой фазовых превращений понимается то количество тепла, которое будет поглощаться или выделяться при изменении агрегатного состояния единицы массы данного вещества.

Расчет теплообменников и различные методы составления теплового баланса

При расчете теплообменников могут использоваться внутренний и внешний методы составления теплового баланса. При внутреннем методе используются величины теплоемкостей. При внешнем методе используются величины удельных энтальпий.

При применении внутреннего метода тепловая нагрузка рассчитывается по разным формулам, в зависимости от характера протекания теплообменных процессов.

Если теплообмен происходит без каких-либо химических и фазовых превращений, а соответственно и без выделений или поглощений тепла.

Соответственно тепловая нагрузка рассчитывается по формуле

Если в процессе теплообмена происходит конденсация пара или испарение жидкости, протекают какие-либо химические реакции, то используется другая форму для вычисления теплового баланса.

При использовании внешнего метода расчет теплового баланса ведется на основании того, что в теплообменный аппарат за какую-то единицу времени поступает и выходит равное количество тепла.
Если при внутреннем методе используются данные о теплообменных процессах в самом агрегате, то при внешнем методе используются данные внешних показателей.

Для расчета теплового баланса по внешнему методу используется формула
.

Под Q1 подразумевается то количество тепла, которое поступает в агрегат и ходит из него за единицу времени.
Под

подразумевается энтальпия веществ, которые входит в агрегат и выходят из него.

Можно также вычислить разность энтальпий для того, чтобы установить то количество тепла, которое было передано между разными средами. Для этого используется формула

Если же в процессе теплообмена происходили какие-либо химические или фазовые превращения, используется формула.

Механизмы теплопередачи в расчете теплообменников

Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.

При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.

При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.

Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.

Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.

Читайте также:  Таблица курсов валют самара

При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.

При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:

Если проинтегрировать показатели температурных изменений по толщине стенки, получится

Источник

Тепловые балансы теплообменных аппаратов

date image2014-02-04
views image8509

facebook icon vkontakte icon twitter icon odnoklasniki icon

Тепловой расчет начинается с определения тепловой нагрузки аппарата и расхода греющего или охлаждающего теплоносителя. Тепловой нагрузкой называется количество тепла, переданного от горячего теплоносителя к холодному. Очевидно, что

В зависимости от заданного процесса тепловые балансы имеют различный вид.

Уравнение теплового баланса в общем виде можно записать в виде равенства

Для холодильников

Для подогревателей

Для испарителей

Для конденсаторов

Для холодильников

Согласно уравнениям (9.3) и (9.4) , . Тогда

где –расход горячего теплоносителя, кг/с; c– средняя удельная теплоемкость горячего теплоносителя, Дж/(кг град); (для газа c = cр ); t1 и t2 – начальная и конечная температуры горячего теплоносителя, град; –расход охлаждающей воды, кг/с; cв –средняя удельная теплоемкость охлаждающей воды, Дж/(кг град); и –температура охлаждающей воды на выходе из аппарата и на входе в аппарат, град.

Из уравнения теплового баланса

определяется расход охлаждающей воды (кг/с):

Для подогревателей

Нагрев одного из теплоносителей происходит за счет конденсации греющего водяного насыщенного пара:

где Д– расход греющего пара, кг/с; i1 – теплосодержание (или энтальпия) греющего пара (находится из таблиц насыщенного водяного пара), Дж/кг; теплосодержание конденсата, Дж/кг; – расход нагреваемого вещества, кг/с; c– удельная теплоемкость нагреваемого вещества, Дж/(кг град); и – начальная и конечная температуры вещества, град.

Уравнение теплового баланса

где – потери тепла от стенок аппаратов в окружающую среду, Вт.

Из практики известно, что потери тепла составляют 2 — 3 % от подведенного тепла и учитываются коэффициентом h = 0,97 — 0,98:

Тогда расход греющего пара (кг/с)

Для испарителей

Нагрев холодного теплоносителя производится с изменением его агрегатного состояния, т.е. жидкость переходит в пар, в то же время горячий теплоноситель (например, насыщенный пар), отдавая тепло также изменяет агрегатное состояние – конденсируется:

где Q1 – тепло, израсходованное для нагрева холодного тепло– носителя до температуры кипения, Вт; Q2 – тепло, затраченное для испарения кипящей жидкости, Вт.

где G – расход холодного теплоносителя, кг/с; с– удельная теплоемкость теплоносителя, Дж/(кг град), – температура кипения холодного теплоносителя, град; t1 – начальная температура холодного теплоносителя, град; r – скрытая теплота парообразования теплоносителя, Дж/кг.

Уравнение теплового баланса

Расход греющего пара (кг/с)

Для конденсаторов

В этих аппаратах происходит процесс охлаждения горячего теплоносителя с изменением агрегатного состояния. Например, технологическое вещество (пары этилового спирта), охлаждаясь конденсируются и жидкий этиловый спирт выходит с заданной температурой t2 . Тепло от горячего теплоносителя чаще всего отводится холодной водой:

где Q1 – тепло, выделяющееся при охлаждении перегретых паров от до насыщенного состояния , Вт; Q2 – тепло, выделяющееся при конденсации насыщенного пара, Вт; Q3 – тепло, выделяющееся при охлаждении горячей жидкости от до заданной температуры t2 , Вт; W– расход охлаждающей воды, кг/с; – удельная теплоемкость воды, Дж/(кг град).

где G– расход горячего теплоносителя, кг/с; – удельная теплоемкость при постоянном давлении для перегретого пара, Дж/(кг град); r– скрытая теплота конденсации горячего теплоносителя, Дж/кг; c– удельная теплоемкость горячего теплоносителя Дж/(кг град). Уравнение теплового баланса:

Если охлаждающая вода попадает в межтрубное пространство и внешние стенки аппарата имеют температуру, мало отличающуюся от температуры окружающей среды, то тепловые потери ничтожно малы и их не учитывают.

Из уравнения (9.19) определяем расход охлаждающей воды (кг/с):

Если в процессе теплообмена есть дополнительные условия, осложняющие процесс, например, дополнительный приход или расход тепла за счет химической реакции или превращения вещества, то их нужно учесть в тепловом балансе.

Источник

Тепловой баланс теплообменного аппарата

Тепловой баланс теплообменного аппарата составляется на основе учёта конструкции устройства и структуры потоков теплоносителей. С помощью данной величины определяются энтальпия и температурный режим на входе или выходе одного из тепло-обменивающихся газов. Также выявляется тепловая нагрузка каждой секции прибора.

Уравнение теплового баланса теплообменных аппаратов

Энтальпия высчитывается на основании выражения dQ=Gdi, Дж/с (Вт):

  • G – расход массы;
  • кг/с; i – удельная энтальпия, Дж/кг.

Для определения конечных изменений теплосодержания используется несколько иное уравнение.

Для расчёта поверхности теплообмена используется выражение Q=k (t1 -t2) F, Вт:

  • k – показатель теплопередачи Вт/(м2•К);
  • t1 и t2 – показатели температур теплоносителей;
  • F – величина поверхности теплопередачи, м2.

Порядок расчёта

Теплогидравлический расчёт теплообменных аппаратов позволяет повысить эффективность работы оборудования, сократить расходы топлива и экономию электроэнергии. Определение нужных данных проводится в следующей последовательности:

  • рассчитывается тепловая нагрузка и расход теплоносителей;
  • вычисляется среднетемпературный напор и средняя температура носителей тепла;
  • высчитывается показатель теплопередачи и площадь обмена теплом.

Тепловой расчёт теплообменных аппаратов бывает конструктивным или проверочным. Какой из видов применять зависит от конечной цели проведения вычисления.

Источник

Adblock
detector