Меню

Таблицы с данными для расчета котла



Как правильно рассчитать мощность котла: рабочая формула

Эффективность работы котла отопления зависит от его мощности в соотношении к площади, которую он должен обогреть. Поэтому приобретение этого прибора должно происходить только после тщательного вычисления всех его параметров, а также реальной оценки условий, в которых он будет эксплуатироваться. Если этим пренебречь, деньги, потраченные на покупку оборудования, могут быть выброшены на ветер — его мощности не будет хватать на обогрев дома или, если она излишняя, придется регулярно переплачивать солидные суммы.

Чтобы правильно рассчитать мощность котла, нужно воспользоваться разработанными методиками с учетом многих факторов, к которым в первую очередь относится тепловые потери отапливаемого помещения, осталось только учесть все возможные потери.

Содержание

  1. Какие факторы нужно учесть при расчете мощности котла?
  2. Методы расчетов
  3. Самый простой способ расчета мощности котла
  4. Второй способ расчета мощности котла для частного дома
  5. Определяем идеальное соотношение мощности и экономности
  6. Видео: Определение мощности отопительной системы в целом и ее элементов

Какие факторы нужно учесть при расчете мощности котла?

  • Первое с чего нужно начать расчет — это помещения дома. Учесть нужно все их характеристики, включая объем и площадь, материалы из которого возведено строение и степень его утепления.
  • Кроме этого, нужно просчитать источники холода, которыми являются элементы дома, и без которых он не может обойтись — двери и окна, пол, стены и крыша, вентиляционная система.

Вооружившись подобными показателями, можно произвести расчет и определить мощность отопительного котла разными способами.

Методы расчетов

Чтобы правильно рассчитать мощность котла для обогрева частного дома нужно в первую очередь записать параметры вашего дома и региона проживания.

По виду топлива котлы делятся на:

  1. газовые;
  2. электрические;
  3. твердотопливные.

Самый простой способ расчета мощности котла

Если не вдаваться в детали и быть уверенным, что в зимние месяцы вы не останетесь без тепла в доме — просто прибавьте к вашим расчетам +50%. Пусть лучше ваш котел будет работать на половину своей мощности, чем постоянно быть «на пределе» своих возможностей.

При простом расчете меряют квадратуру дома и умножают на коэффициент 0.15.

Например:

У вас одноэтажный дом площадью 110 м2.

Для того, чтобы правильно определить мощность котла — нужно просто умножить эту цифру на 0.15.

Получаем, что для дома, площадью 110 м2 нужен котел с мощностью 16.5 кВт.

Если простые методы вам чужды и вы хотите чуть больше заморочиться, вам нужно переходить к следующей части нашей статьи!

Второй способ расчета мощности котла для частного дома

Он чуть более сложный, чем первый, так как тут учитывается гораздо больше факторов, но он и более точнее. Кроме этого, вы не будете переплачивать за через чур мощный котел, который, как может оказаться, вам и не нужен.

Точный компьютерный расчет теплопотерь может провести специалист-проектировщик при составлении проекта дома.

Если таких расчетов по проекту не производилось, то их можно выполнить и самостоятельно, если это касается частного дома, имеющего небольшую площадь. При этом придется ответить на некоторые вопросы:

  • из какого материала возведены стены, и какую толщину они имеют;
  • каков общий объем кубатуры дома;
  • наличие утеплителя и его толщина;
  • количество окон, их размеры, материалы из которых они изготовлены (если это стеклопакеты, то, количество камер в них).

Эти вопросы представлены в специальной анкете, которую можно найти в Интернете на специализированных сайтах. В ней находятся несколько ответов на каждый поставленный вопрос, в зависимости от выбора которых и будет произведен расчет мощности отопительного аппарата для конкретного дома.

Примерно установленный коэффициент, определяющий теплопотери для центральных российских регионов, выглядит так:

  • для строения, не имеющего теплоизоляции — 130—200 Вт/м²;
  • для дома 80—90-х годов, имеющего теплоизоляцию — 85—115 Вт/м²;
  • для постройки начала XXI века, с установленными стеклопакетами — 55—75 Вт/м².

Этот коэффициент умножается на площадь всего строения и получается число теплопотерь. Однако нельзя сказать, что опираясь на эти цифры можно получить точные результаты, так как они производятся без учета региона, где расположено жилище, количества и размера оконных проемов и прочих факторов, от которых напрямую зависят теплопотери.

Еще одним способом расчета мощности отопительного прибора является вычисление удельной мощности обогрева каждой из комнат, которые суммируются, и получается нужное значение. Это делается по формуле, в которой параметры обозначаются следующими буквами и цифрами:

  1. мощность котла — W;
  2. мощность для обогрева единицы площади в кв. метрах — W1;
  3. площадь всех отапливаемых комнат — ΣS.

Сама формула выглядит так: W=ΣSxW1. Чтобы применить ее на практике, нужно знать мощность, необходимую для отопления одного м².

Она также определяется, опираясь на некоторые факторы:

  • средний температурный показатель в данной местности в холодное время года;
  • расположение помещения (внутренняя или торцевая комната);
  • количество и размер окон;
  • предполагаемое количество источников тепла;
  • сопротивление теплоотдаче.

Такой расчет достаточно сложен, поэтому лучше, если он будет произведен специалистами. Но нужно задуматься, стоит ли это делать, когда при проектировании любого сооружения уже внесены нужные показатели, которые учитывают климат региона.

Поэтому можно действовать, используя упрощенный метод определения мощности отопительного прибора.

  • В самом простом методе подсчета оценивается не каждый отдельный фактор и комната, а делается комплексная оценка дома. Для этого разработана совсем простая формула 10 м2 = 1 кВт при высоте потолков от 2,6 до 3,1 м. То есть на каждые 10 кв. метров площади требуется мощность 1 кВт, если высота потолка не выше, чем 3—3,1 м.

Например, дом площадью в 250 кв. метров потребует для качественного отопления котел, имеющий мощность не менее 25 кВт (250 : 10 = 25)

Для каждого региона рассчитано значение коэффициента мощности, который учитывает климат в месте расположения жилища. Произведение его и площади дома также будет цифрой, которая указывает на мощность котла.

Если получается значение мощности такого номинала, котлов с которым не производят, значит, нужно приобрести отопительный прибор, который будет ближе всего к рассчитанному значению, лучше, если мощность котла перекрывает требуемую.

Пользуясь этим методом расчета, нужно знать, что он удобен своей простотой, но не дает точного результата для зданий, имеющих сложную архитектуру. Поэтому, если требуется сделать расчет для таких строений, лучше будет доверить эту работу специалистам.

Определяем идеальное соотношение мощности и экономности

Чтобы следовать принципам экономии, нужно учесть еще некоторые моменты при эксплуатации котла.

В холодное время в доме необходимо поддерживать температуру 20—22 градуса, она оптимально комфортна для человеческого организма. Но учитывая то, что в течение зимы температура меняется, а самые морозные дни бывают только несколько раз за отопительный сезон, то можно согреть дом, используя котел, имеющий мощность наполовину ниже получившейся при расчетах.

Для нормального функционирования котла долгие годы лучше, если он будет работать с номинальной, а не с пиковой мощностью. Но за отопительный период потребность в поддержании высокой температуры в доме иногда отпадает. Чтобы выйти из этого положения используют смесительные клапаны.

Они нужны для того, чтобы можно было регулировать температуру теплоносителя в батареях. Для этого применяют системы гидравлики с термогидравлическими распределителями или с четырехходовыми клапанами. Если они установлены в системе отопления, температуру можно изменить регулятором, оставляя мощность котла постоянной.

После проведения таких модернизаций котел даже маленькой мощности будет работать в оптимальном режиме, достаточном для качественного обогрева всех помещений. Это решение достаточно дорогое, но оно поможет сэкономить на расходе топлива.

  • Другой случай, когда котел имеет превышенную для данного помещения мощность, и совсем не хочется переплачивать за избыточное топливо, которое должно обеспечивать его работу. Чтобы избежать этих неприятных трат, можно установить буферный бак (бак-аккумулятор), который полностью заполняется водой.

Это дополнение будет к месту, если для отопления используют котлы на твердом топливе — прибор будет работать на полную мощность, даже если требуется только кратковременное тепло.

Когда на улице повышается температура, а котел отключать еще рано, клапан-автомат начинает ограничивать поступление подогретой воды в батареи. Он направляет ее в теплообменник буферного бака, и там она будет нагревать воду, которая уже находится в баке. Объем бака должен составлять 10:1 по отношению к площади дома, например, на 50 квадратных метров площади понадобится бак объемом в 500 литров.

Читайте также:  Лестер сити таблица игр

Эта вода, нагревшись, начинает функционировать после остывания воды в контуре — она начинает поступать в радиаторы, и система продолжит отапливать помещения еще некоторое время.

Видео: Определение мощности отопительной системы в целом и ее элементов

Выбрав способ расчета мощности котла, дополнительно можно получить консультацию у специалистов, чтобы приобретать прибор уже наверняка. Опираясь на полученные данные при расчетах, можно сэкономить средства при покупке отопительного котла и при его эксплуатации.

Источник

Как рассчитать мощность котла отопления

Одним из основных условий комфорта в квартире является отопительная система. А вид этого отопления, наряду с оборудованием для него, должны быть учтены еще на начальных этапах строительства дома. Дабы отопление в доме было максимально эффективным, необходимо правильно рассчитать требуемую мощность котла в зависимости от обогреваемой площади.

Именно о том, как правильно сделать расчет мощности котла отопления, и пойдет речь в сегодняшней статье. Отопительные системы бывают разные, все они имеют свои особенности, которые следует учесть во время вычислений.

расчет мощности котла

  • 1 Формулы и коэфиценты расчета
  • 2 Образец расчета
  • 3 Как производить расчет мощности различных типов котлов
  • 4 Как рассчитывается мощность радиаторов

Формулы и коэфиценты расчета

До того как приступить непосредственно к расчетам мощности, давайте для начала рассмотрим, какие показатели будут использоваться.

  1. Мощность отопителя на 10 метров квадратных, которая определяется с учетом климатических особенностей конкретного региона (Wуд):
    для городов, расположенных на севере, она составляет примерно 1.5-2 киловатта;
    — для тех, кто расположен на юге – 0.7-0.9 киловатта;
    — и для городов Московской области – 1.2-1.5 киловатта.
  2. Площадь отапливаемого помещения – обозначается буквой S.

Ниже приведена формула расчета:

формула расчета мощности котла отопления

Важно! Существует и более простой способ подобных вычислений, в котором Wуд будет равняться единице. Следовательно, мощность котла будет становить 10 киловатт на 100 метров квадратных. Но если делать все таким образом, то к итоговому результату необходимо добавить еще порядка 15%, дабы значение было более объективным.

Таблица мощности и затрат на отопления

таблица зависимости мощности и расходов на отопление

Образец расчета

Как мы выяснили, формула для того, чтобы сделать расчет мощности котла отопления, очень простая. Но мы все равно приведем один пример ее практичного использования.

Мы имеем следующие условия. Площадь помещения, которое необходимо будет отопить, составить 100 метров квадратных. Наш регион – Москва, следовательно, удельная мощность составить 1.2 киловатта. Если мы поставим все это в нашу формулу, то получатся следующие данные.

формула расчета мощности котла

Как производить расчет мощности различных типов котлов

То, насколько эффективная отопительная система, будет в первую очередь зависеть от того, какого она типа. И, конечно же, на нее будет влиять правильность произведенных расчетов касаемо необходимой мощности отопительного котла. Если же такие расчеты покажут необъективные данные, то в скором будущем вас будут ждать неизбежные проблемы.

тепловые потери

Если теплоотдача прибора будет меньше необходимого минимума, то в зимнее время в доме будет холодно. Если же его производительность будет излишней, то это не приведет ни к чему, кроме как к излишним затратам энергии, а следовательно, и ваших денег.

Дабы избежать подобных неприятностей, вам потребуются только знания касаемо того, как рассчитывается мощность котла. Также учтите тот факт, что существуют различные типы отопления, в зависимости от используемого топлива. Вот они:

  1. На твердом топливе.
  2. Электрические.
  3. На жидком топливе.
  4. Газовые.

При выборе той или иной системы люди зачастую основываются на особенностях конкретного региона, а также на стоимости оборудования.

Котлы на твердом топливе

Дабы рассчитать мощность котла на твердом топливе, вы должны учесть особенности, которые характерны для данного типа оборудования.

  1. Относительно низкая популярность.
  2. Потребность в дополнительном пространстве для того, чтобы хранить топливо.
  3. Доступность.
  4. Процедура эксплуатации проходит весьма экономично.
  5. Такие котлы могут функционировать автономно, по крайней мере, большая часть современных приборов предусматривает это.

Помимо этого, еще одним фактором, который нужно учесть, делая расчет мощности котла отопления, является то, что температура получается циклично. Иными словами, в помещении, отапливаемом такой системой, температура в течение дня может колебаться с зазором в 5 градусов.

Важно! Именно по этой причине твердотопливные котлы едва ли можно назвать наилучшими, а если есть возможность, то от их покупки лучше вообще отказаться. Но если такой возможности нет, у вас есть два способа того, как частично оградить себя от таких проблем.

  1. Использовать теплоаккумуляторы, объем которых может достигать 10 метров кубических. Они подсоединяются к системе отопления и существенно сокращают теплопотери, что позитивно сказывается на затратах на отопление.
  2. Соорудить термобаллон, необходимый для контроля подачи воздуха. Благодаря ему время горения увеличивается, а количество топок, следовательно, снижается.

Благодаря всему этому необходимая вам производительность котла снижается. Также все это следует учесть при расчетах.

котел на твердом топливе

Все котлы, работающие на электрической энергии, отличаются следующими особенностями.

  1. Они компактны.
  2. Топливо для них – электричество – стоит дорого.
  3. Управлять ими крайне просто.
  4. При перебоях в сети возможны проблемы с их функционированием.
  5. Они экологически безопасны.

Собственно, это все, что вам нужно помнить при вычислении необходимой мощности для котла, работающего на электроэнергии.

расчет мощности электрокотла

Котлы на жидком топливе

А теперь поговорим о жидкотопливных котлах. В целом, они характеризуются следующими особенностями.

  1. Такие котлы не являются экологически безопасными.
  2. Для них используется весьма дорогостоящий тип топлива.
  3. Эксплуатация таких котлов отличается простотой и удобством.
  4. Еще одна особенность – повышенная пожаробезопасность.
  5. При их установке вы должны позаботиться о еще одном помещении, в котором в будущем будет храниться топливо.

расчет котла на жидком топливе

На этом особенности жидкотопливных котлов закончились.

Последний тип котлов, о которых мы поговорим сегодня – это газовые приборы. Они в большинстве своем – наиболее оптимальный вариант при установке системы обогрева. Расчет мощности котлов отопления данного типа невозможно сделать, не учтя следующие его особенности.

  1. Эксплуатация таких котлов отличается простотой и удобством.
  2. Они экономичны.
  3. Они не требуют дополнительного места для того, чтобы хранить топливо.
  4. Стоимость самого топлива для них (газа) относительно невысокая.
  5. Наконец, их эксплуатация отличается повышенной безопасностью.

расчет мощности газового котла

Все, с котлами мы более-менее разобрались, теперь порассуждаем о том, как вычислить мощность для радиаторов в отопительной системе.

Как рассчитывается мощность радиаторов

Давайте припустим, что вы, к примеру, намерились установить отопительные радиаторы своими руками. Разумеется, их предварительно следует приобрести. Более того, при покупке вы должны выбрать именно ту модель, которая вам больше всего подойдет.

расчет мощности радиаторов

Все вычисления касаемо радиаторов также довольно просты. В качестве примера мы будем рассматривать комнату, площадь которой будет составлять 14 метров квадратных, а высота – 3 метра.

Читайте так же, о том как рассчитать количество секций радиатора

    Прежде всего, нам необходимо определить объем данной комнаты. Для этого нужно умножить высоту комнаты на ее площадь, в итоге мы получаем 42 метра кубических.

Важно! Вам следует учесть тот факт, что для отопления одного кубометра в средней полосе нашей страны требуется примерно 41 ватт.

пример расчета

  • Не забываем прибавить еще 15% к полученной нами цифре. Эта нехитрая манипуляция позволит вас сгладить рост требуемой производительности в периоды, когда морозы особенно суровы. После этого у нас получается 1.68, но мы, опять же, округляем этот показатель до 2.
  • Наконец, добавляем 2 до 11 – и у нас получается 13, следовательно, для нашей комнаты на 14 метров квадратных необходимы радиаторы по 13 секций каждый.
  • В качестве заключения

    Вот мы с вами и выяснили, как правильно производится расчет мощности котла отопления, захватив сюда и радиаторы. Если вы будете четко следовать этим советам, то в итоге у вас будет весьма эффективная отопительная система, которая в то же время не будет отличаться «расточительностью». На этом все, удачи вам и теплых зим!

    Источник

    Примеры расчетов тепловых схем котельных

    Примеры расчетов тепловых схем котельных

    А. Примеры расчетов тепловых схем котельных

    В качестве примера приводится расчет принципиальной тепловой схемы котельной с паровыми котлами (см. рис. 5.5), со следующими исходными данными и условиями эксплуатации.

    Котельная предназначена для отпуска пара технологическим потребителям и для подогрева горячей воды для отопления, вентиляции и горячего водоснабжения жилых и общественных зданий. Система теплоснабжения — закрытая. Пар, вырабатываемый в паровых котлах, расходуется на технологические нужды: с параметрами 14 кгс/см 250°С — 10 т/ч с параметрами 6 кгс/см 2 , 190°С — 103 т/ч; на подогреватели сетевой воды с параметрами 6 кгс/см 2 , 190°С (расчетная тепловая нагрузка в виде горячей воды 15 Гкал/ч), а также на собственные нужды и восполнение потерь в котельной. Температурный график тепловых сетей для жилого района 150 — 70°С. Расчетная минимальная температура наружного воздуха — 30°С. Для расчетов принимается температура сырой воды зимой 5°С, летом — 15°С, подогрев воды перед водоподготовительной установкой до 20°С. Деаэрация питательной и подпиточной воды осуществляется в атмосферных деаэраторах при температуре 104°С; питательная вода имеет температуру 104°С, подпиточная 70°С.

    Читайте также:  Проанализировать основные показатели деятельности предприятия таблица

    Возврат конденсата от технологических потребителей пара 50% и его температура 80°С. Предусматривается непрерывная продувка паровых котлов с использованием отсепарированного пара в деаэраторе питательной воды. По характеру работы котельная является производственной. Отопительная нагрузка невелика, продолжительность стояния минусовых температур: — 30°С — 10ч; — 20°С — 150 ч; — 15°С — 500 ч; -10°С — 1100 ч; — 5°С — 2400 ч и 0°С — 3500 ч при общей длительности отопительного периода в 5424 ч [11].

    Примеры расчетов тепловых схем котельных, выполненые для максимально зимнего режима.

    Расход пара на подогреватели сетевой воды

    где G — расход сетевой воды, т/ч; Q ов = 15 Гкал/ч — расход теплоты на отопление, вентиляцию на горячее водоснабжение с учетом потерь по заданию; i poy — энтальпия редуцированного пара, ккал/кг; i K — энтальпия конденсата после охладителя конденсата, ккал/кг; i l — энтальпия воды после подогревателя, ккал/кг; i 2 — энтальпия воды перед подогревателем, ккал/кг.

    Суммарный расход редуцированного пара для внешних потребителей

    Суммарный расход свежего пара на внешних потребителей, т/ч,

    где D т = 10 т/ч — расход свежего пара;

    i nв — энтальпия питательной воды, ккал/кг; i′ poy — энтальпия свежего пара, ккал/кг.

    Подставив указанные величины, получим:

    Количество воды, впрыскиваемой в пароохладитель РОУ, при получении редуцированного пара для внешних потребителей, определяем по формуле:

    При расчете редукционно-охладительной установки потери теплоты в окружающую среду из — за их незначительности не учитываются.

    Расход пара на другие нужды котельной предварительно, с последующим уточнением, принимается в размере 5 % внешнего потребления пара:

    Суммарная паропроизводительность ко-тельной с учетом потерь, принимаемых равными 3 %, и расхода пара на другие нужды котельной:

    Потеря конденсата с учетом 3 % его потерь внутри котельной будет:

    Расход химически очищенной воды при величине потерь воды в тепловых сетях 2% общего расхода сетевой воды равен сумме потерь конденсата и количества воды для подпитки тепловых сетей:

    Принимая расход воды на собственные нужды водоподготовительной установки равным 25% расхода химически очищенной, получим расход сырой воды:

    Расход пара на пароводяной подогреватель сырой воды может быть определен после уточнения температуры сырой воды за охладителем продувочной воды паровых котлов.

    Количество воды, поступающей от непрерывной продувки:

    где р пр = 3 % — принятый процент продувки котлов, определяемый в зависимости от качества исходной воды и способа химводоподготовки.

    Количество пара на выходе из расширителя непрерывной продувки по формуле (5.9)

    где х — степень сухости пара, выходящего из расширителя. Количество воды на выходе из расширителя:

    Выполненные расчеты позволяют определить температуру сырой воды после охладителя продувочной воды:

    где i охл =50 ккал/кг — энтальпия продувочной воды после охладителя.

    Расход пара на пароводяной подогреватель сырой воды определяется по формуле (5.14):

    Подогрев химически очищенной воды производится: в водяном теплообменнике до деаэратора подпиточной воды за счет охлаждения воды от 104°С до 70°С; в пароводяном подогревателе до деаэратора питательной воды за счет теплоты редуцированного пара.

    Подогрев химически очищенной воды в охладителях выпара из деаэраторов в данном случае незначителен и не учитывается, так как практически не сказывается на точности расчета схемы. Температура воды, поступающей в деаэратор за теплообменником для охлаждения подпиточной воды, определяется из уравнения теплового баланса теплообменника:

    где t′ хов = 18 °С — температура воды после ВПУ; G подп = 188*0,02 = 3,8 т/ч — расход подпиточной воды; G подп/хов = 3,5 т/ч — предварительно принятый расход химически очищенной воды, поступающей в деаэратор для подпитки тепловых сетей.

    Расход пара на деаэратор подпиточной воды:

    С учетом количества пара, идущего на подогрев воды, фактический расход химически очищенной воды, поступающей в деаэратор для подпиточной воды, будет:

    что мало отличается от предварительно принятой величины в 3,5 т/ч.

    Расход пара на пароводяной подогреватель химически очищенной воды, поступающей в деаэратор питательной воды, определен аналогично предыдущему:

    где G пит/хов = G к.noт = 60,9 т/ч — расход химически очищенной воды, идущей в подогреватель; i’ xов — энтальпия воды после подогревателя, ккал/кг; i хов — энтальпия воды перед подогревателем, ккал/кг.

    Суммарное количество воды и пара, поступающее в деаэратор для питательной воды, за вычетом греющего пара,

    средняя температура будет равна:

    Эти расчеты позволяют определить расход пара на деаэратор питательной воды:

    Тогда суммарный расход редуцированного пара внутри котельной для собственных нужд:

    Паропроизводительность котельной с учетом внутренних потерь:

    Расхождение с величиной D, принятой в предварительном подсчете, равно 7,3 т/ч, что составляет 4,8 %, поэтому следует уточнить расчет, принимая увеличенный расход пар. на собственные нужды котельной.

    Уточненный расход пара:

    Расчет тепловой схемы котельной для других режимов производится аналогично рассмотренному. Для установки в котельной, с учетом коэффициента совпадения максимумов потребностей пара К = 0,95 — 0,98, принимаются три паровых котла паропроизводительностью по 50 т/ч со следующими параметрами: давление 14 кгс/см 2 , температура 250°С. Такие котлы выпускает Белгородский завод «Энергомаш».

    Б. Примеры расчетов тепловых схем котельных для закрытой системы теплоснабжения.

    Примеры расчетов тепловых схем котельных выполняются для приведенной на рис. 5.7 принципиальной тепловой схемы котельной. Котельная предназначена для снабжения горячей водой жилых и общественных зданий для нужд отопления, вентиляции и горячего водоснабжения. Тепловые нагрузки котельной с учетом потерь в наружных сетях при максимально зимнем режиме следующие: на отопление и вентиляцию 45 Гкал/ч; на горячее водоснабжение 15 Гкал/ч. Тепловые сети работают по температурному графику 150 — 70°С. Для горячего водоснабжения принята смешанная схема подогрева воды у абонентов. Расчетная минимальная температура наружного воздуха — 26°С. Подогрев сырой воды перед химводоочисткой до 20°С — от 5°С зимой и 15°С летом. Деаэрация воды осуществляется в деаэраторе при атмосферном давлении. Годовой график нагрузки котельной дай рис. 5.20, где приведены данные о продолжительности стояния наружных температур в сутках.

    Примеры расчетов тепловых схем котельных ведутся для пяти характерных режимов работы системы теплоснабжения и для двух температур воды на входе и выходе из котлов. При работе водогрейных котлов на малосернистых каменных углях температура воды на входе в котлы поддерживается постоянной t = 70°C, на выходе из котлов t′ K = 150°С. Основной расчет ведется на максимальный зимний режим. Отпуск теплоты на отопление и вентиляцию Q0.n=45 Гкал/ч. Отпуск теплоты на горячее водоснабжение Q гв = 15 Гкал/ч, что дает общую теплопроизводительность котельной Q K = 60 Гкал/ч.

    Расчетный часовой расход сетевой воды для нужд отопления и вентиляции по формуле (5.21) составит:

    Рис. 5.20. График нагрузки котельной с водогрейными котлами и данные о длительности стояния наружной температуры.

    Расчетный часовой расход воды для нужд горячего водоснабжения по формуле (5.23) будет:

    При применении у абонентов смешанной схемы подогрева воды для горячего водоснабжения используется теплота обратной сетевой воды после систем отопления и вентиляции. Расчетом проверяется температура обратной сетевой воды после местных теплообменников горячего водоснабжения, которая по формуле (5.22) равна:

    Суммарный расчет на часовой расход сетевой воды по формуле (5.25)

    Расход воды на подпитку при потерях 2 % в тепловых сетях:

    Расход сырой вода на химводоочистку при собственных нуждах последней 25 % производительности:

    Температура химически очищенной воды после теплообменника — охладителя подпиточной воды 9, установленного после деаэратора 10,

    где G XOB = 10 т/ч — предварительно принятый расход химически очищенной воды; с в = 1 ккал/кг;

    Задаваясь расходом греющей воды G подл/гр = 6 т/ч и температурой на выходе из подогревателя следующей ступени подогрева химически очищенной воды t гр = 108°С, определяем температуру воды, поступающей в деаэратор:

    Читайте также:  Таблица удельная мощность для квартир

    С учетом подсчитанных величин температура сырой воды перед химводоочисткой:

    Расход греющей воды на деаэраторною установку определяется из уровня теплового баланса:

    При составлении баланса количества вода в котельной установке величину G д/гp следует учитывать при определении расхода воды на подпитку тепловых сетей. Расход химически очищенной воды на подпитку будет:

    Потери воды в охладителе незначительны и при составлении баланса без ущерба для точности ими можно пренебречь. При принятой температуре вода на входе в котлы t = 70°С, на выходе из них t К = 150°С расход воды через котлы составит:

    При температуре обратной воды t TC = 42,6°С для получения температуры воды на входе в котлы 70°С нужен следующий расход воды на рециркуляцию [см. формулу (5.33)]:

    Для режима с максимальной теплопроизводительностью расход воды в перепускную линию отсутствует:

    Для проверки правильности выполненного расчета тепловой схемы нужно составить баланс количества воды для всей котельной установки.

    Расход через обратный трубопровод сетевой воды:

    а расчетный расход воды через котлы будет:

    Поскольку часть горячей вода после котлов идет на подогреватели, в деаэратор и на рециркуляцию, расход сетевой воды на выходе из котельной составит:

    Разница между найденным ранее и уточненным расходами воды через котлы незначительна (

    Примеры расчетов тепловых схем котельных могут считаться законченными. В случае несовпадения величины более чем на 3% необходимо произвести пересчет расходов горячей воды на собственные нужды при той же теплопроизводительности котельной. В данном примере расчета тепловой схемы котельной повышение температуры вода перед сетевыми насосами за счет тепла, вносимого с подпиточной водой и охлажденной водой от подогревателя сырой воды, не учитывалось вследствие их малой величины (меньше 2%).

    Для других режимов работы котельной расчет тепловой схемы производится аналогично; результаты его представлены в табл. 5.2. В тех случаях, когда данные о расходе горячей сетевой воды для нужд горячего водоснабжения и подогрева воды у абонентов отсутствуют, можно принять следующий порядок определения этого расхода. При известном расходе воды на горячее водоснабжение ,т/ч, тепловая нагрузка подогревателя первой ступени (обратно линии сетевой воды) (см. рис. 5.3) может быть определена из уравнения:

    где — Δ t минимальная разность температур подогреваемой и греющей воды, принимается равной 10°С; остальные обозначения в этом уравнении приводились ранее.

    Тепловая нагрузка подогревателя второй ступени, Гкал/ч, где вода нагревается прямой сетевой водой, составит:

    При известной величине тепловой нагрузки подогревателя второй ступени расход сетевой воды, т/ч, на него составит:

    Источник

    Курсовая работа: Расчет парового котла ДЕ-6,5-14

    Проверочный расчет выполняют для существующих параметров. По имеющимся конструктивным характеристикам при заданной загрузке и топливе определяют температуры воды, пара, воздуха и продуктов сгорания на границах между поверхностями нагрева, КПД агрегата, расхода топлива. В результате поверочного расчета получают исходные данные, необходимые для выбора вспомогательного оборудования и выполнения гидравлических, аэродинамических и прочностных расчетов.

    При разработке проекта реконструкции парогенератора, например, в связи с увеличением его производительности, изменением параметров пара или с перевозом на другое топливо, может требоваться изменение целого ряда элементов, которые необходимо изменить, выполняют так, чтобы по возможности сохранялись основные узлы и детали типового парогенератора.

    Расчет выполняется методом последовательного проведения расчетных операций с пояснением производимых действий. Расчетные формулы сначала записываются в общем виде, затем подставляются числовые значения всех входящих в них величин, после чего производится окончательный результат.

    1 Технологический раздел

    1.1 Краткое описание конструкции котла.

    Котлы типа Е (ДЕ) предназначены для выработки насыщенного или перегретого пара при работе на газе и мазуте. Изготовитель: Бийский котельный завод.

    Котел Е (ДЕ)-6,5-14-225ГМ имеет два барабана одинаковой длины диаметром около 1000 мм и выполнены по конструктивной схеме «Д», характерной особенностью которой является боковое расположение конвективной части котла относительно топочной камеры. Топочная камера расположена справа от конвективного пучка по всей длине котла в виде вытянутой пространственной трапеции. Основными составными частями котла являются верхний и нижний барабаны, конвективный пучок и образующие топочную камеру левый топочный экран (газоплотная перегородка), правый топочный экран, трубы экранирования фронтовой стенки топки и задний экран. Межцентровое расстояние установки барабанов 2750 мм. Для доступа внутрь барабанов в переднем и заднем днищах барабанов имеются лазы. Конвективный пучок образован коридорно расположенными вертикальными трубами диаметром 51×2,5 мм, присоединяемыми к верхнему и нижнему барабанам.

    В конвективном пучке котла для поддержания необходимого уровня скоростей газов устанавливаются ступенчатые стальные перегородки.

    Конвективный пучок от топки отделен газоплотной перегородкой (левым топочным экраном), в задней части которой имеется окно для выхода газов в конвективный газоход. Газоплотная перегородка выполняется из труб, установленных с шагом 55 мм. Вертикальная часть перегородки уплотняется вваренными между трубами металлическими проставками.

    Поперечное сечение топочной камеры для всех котлов одинаково. Средняя высота составляет 2400 мм, ширина – 1790 мм.

    Основная часть труб конвективного пучка и правого топочного экрана, а также трубы экранирования фронтовой стенки топки присоединяются к барабанам вальцовкой. Трубы газоплотной перегородки, а также часть труб правого топочного экрана и наружного ряда конвективного пучка, которые устанавливаются в отверстиях, расположенных в сварных швах или околошовной зоне, привариваются к барабанам электросваркой.

    Трубы правого бокового экрана ввальцованы одним концом в верхний барабан, а другим – в нижний, образуя таким образом потолочный и подовый экраны. Под топки закрыт слоем огнеупорного кирпича. Задний экран имеет два коллектора (диаметром 159×6 мм) – верхний и нижний, которые связаны между собой трубами заднего экрана на сварке и необогреваемой рециркуляционной трубой (диаметром 76×3,5 мм). Сами коллекторы одним концом присоединяются к верхнему и нижнему барабанам на сварке. Фронтовой экран образован четырьмя трубами, развальцованными в барабанах. В середине фронтового экрана размещена амбразура горелки типа ГМ. Температура дутьевого воздуха перед горелкой не менее 10 °С.

    Выступающие в топку части барабанов защищены от излучения фасонным шамотным кирпичом или шамотно-бетонной обмазкой.

    Обмуровка натрубная снаружи обшита металлическим листом для уменьшения присосов воздуха. Обдувочные устройства расположены с левой стороны на боковой стенке котла. Обдувочный аппарат имеет трубу с соплами, которую необходимо вращать при проведении обдувки. Вращение обдувочной трубы производится вручную при помощи маховика и цепи. Для обдувки используется насыщенный или перегретый пар при давлении не менее 7 кгс/см 2 .

    Выход дымовых газов из котла осуществляется через окно, расположенное на задней стенке котла в экономайзер.

    На фронте топочной камеры котлов имеется лаз в топку, расположенный ниже топочного устройства, и три лючка-гляделки – два на правой боковой и один на задней стенках топочной камеры.

    Взрывной клапан на котле располагается на фронте топочной камеры над горелочным устройством.

    Котел выполнен с одноступенчатой схемой испарения. Опускным звеном циркуляционных контуров котла являются последние по ходу газов наименее обогреваемые ряды труб конвективного пучка.

    На котле предусмотрена непрерывная продувка из нижнего барабана и периодическая из нижнего коллектора заднего экрана.

    В водяном пространстве верхнего барабана находятся питательные трубы и направляющие щиты, в паровом объеме – сепарационные устройства. В нижнем барабане размещаются устройство для парового прогрева воды в барабане при растопке и патрубки для спуска воды. В качестве первичных сепарационных устройств используются установленные в верхнем барабане направляющие шиты и козырьки, обеспечивающие выдачу пароводяной смеси на уровень воды. В качестве вторичных сепарационных устройств применяются дырчатый лист и жалюзийный сепаратор. Отбойные щиты, направляющие козырьки, жалюзийные сепараторы и дырчатые листы выполняются съемными для возможности полного контроля и ремонта вальцовочных соединений труб с барабаном. Температура питательной воды должна быть не менее 100 °С. Котлы изготавливаются в виде единого блока, смонтированного на опорной раме, на которую передается масса элементов котла, котловой воды, каркаса, обмуровки. Нижний барабан имеет две опоры: передняя неподвижная, а задняя – подвижная, и на ней установлен репер. На верхнем барабане котла установлены два пружинных предохранительных клапана, а также котловой манометр и водоуказательные приборы.

    Котел имеет четыре циркуляционных контура: 1-й – контур конвективного пучка; 2-й – правого бокового экрана; 3-й – заднего экрана; 4-й – фронтового экрана.

    Основные характеристики котла Е (ДЕ)-6,5-14-225ГМ

    Источник

    Adblock
    detector