Меню

Таблица пространственное строение молекул



Пространственное строение молекул неорганических и органических веществ

Тема: «Пространственное строение молекул неорганических и органических веществ»

Дата: 16.10.2018

Показать зависимость геометрии молекул от типа гибридизации электронных орбиталей, а свойства веществ от геометрии молекул.

— образовательные: раскрыть универсальный характер процесса гибридизации для органических, сложных неорганических веществ и аллотропных модификаций углерода.

— развивающие: развивать умения объяснять при выполнении заданий, логически мыслить, делать выводы.

— воспитательные: обратить внимание учащихся на влияние фундаментальных законов природы и особенностей строения молекул на существующий порядок и красоту в мире.

Использованные приемы педагогических технологий: мозговая атака, работа в группах.

1. Введение (устный опрос, вывод темы, целеполагание).

На предыдущих уроках мы говорили о химической связи.

Какие виды связей вы знаете? (ионная, ковалентная, металлическая, водородная).

За счет чего образуется каждый вид связи и между какими частицами? (ионная – между ионами за счет притяжения, металлическая – в кристаллах металла между ион-атомами металлов за счет обобществления электронов, ковалентная – между атомами неметаллов за счет перекрывания электронных орбиталей).

Вспомним подробнее характеристики ковалентной связи (длина, энергия, полярность, насыщенность, направленность).

Что определяется направленность ковалентной связи? (геометрию молекул, то есть их пространственное строение).

На сегодняшнем уроке мы будем говорить о геометрии молекул, от чего она зависит и как влияет на свойства веществ. Тема нашего урока – «Пространственное строение молекул неорганических и органических веществ».

2. Основная часть урока

Актуализация знаний о гибридизации, полученных в 10 классе

В образовании химической связи главную роль играют электроны внешнего энергетического уровня (валентные электроны), которые у различных химических элементов будут находиться на разных электронных подуровнях и, следовательно, двигаться в пространстве по орбиталям разных форм, затрачивая при этом больше или меньше собственной энергии.

Задание: определите типы орбиталей валентных электронов в атомах Cl , Ca , O .

Для образования химической связи необходимо, чтобы электронные орбитали в пределах одного уровня были одинаковыми.

В: Как называется процесс, приводящий к выравниванию электронных орбиталей по форме и, соответственно, по энергии?

ОО: Гибридизация орбиталей.

Давайте вспомним, какие виды гибридизации мы изучали в 10 классе.

Работа в группах

Каждой группе выдается карточка со строением алканов, алкенов или алкинов (приложение 1). Вспомните электронное строение атома углерода (на внешнем уровне в возбужденном состоянии 1 s и 3 p неспаренных электрона). После 3 минут обсуждения учащиеся должны ответить на вопросы:

Какой тип гибридизации в данном соединении?

Как вы определили тип гибридизации? (по общему числу гибридных орбиталей: 4 => 1 s и 3 p ; 3 => 1 s и 2 p ; 2 => 1s и 1 p ).

Какова пространственная структура данной молекулы? Отчет предоставляет в устной форме один из участников группы.

Вывод — в случае молекул метана, этилена и ацетилена в образовании гибридных орбиталей участвуют только орбитали, содержащие неспаренные электроны. Гибридные орбитали при этом принимают такое расположение, при котором они максимально удалены друг от друга (то есть они как бы отталкиваются друг от друга).

3. Введение нового материала

Гибридизация электронных орбиталей имеет место и при образовании других молекул, как органических, так и неорганических.

1) Молекула воды. В молекуле воды H2O центральным атомом является атом кислорода, который в невозбужденном состоянии имеет следующую электронную конфигурацию: 1 s 2 2 s 2 2 p 4

Кислород в молекуле воды также находится в состоянии sp3 – гибридизации (рис. 1).

hello_html_m56a4d950.jpg

Рис. 1. Пространственная конфигурация молекулы Н2О

2) Гидрид бора. Перекрывание sp2 – гибридных орбиталей атома бора с 1s – трех атомов водорода приводит к образованию треугольной (тригональной) молекулы гидрида бора BH3; валентный угол H – B – H в молекуле BH3 равен 120 0 (рис. 3).

hello_html_m32c6e5.jpg

Рис. 2. Пространственная конфигурация молекулы BH3

hello_html_m1e3eb2c8.jpg

3)

Обобщим знания, которые теперь есть у нас о гибридизации орбиталей и форме молекул. Вместе заполним таблицу. В качестве примеров запишем формулы органических и неорганических веществ, которые мы рассмотрели.

hello_html_5be19780.jpg

Итак, от чего зависит геометрия молекул? (от формы электронных орбиталей)

Что такое гибридизация? (взаимодействие орбиталей и выравнивание их по форме и энергии)

Какую форму могут иметь молекулы, образованные атомами с sp, sp2 и sp3 гибридизацией орбиталей?

5. Домашнее задание.

6. Рефлексия. Скажите, чем сегодняшний урок вам запомнился и стал (стал ли?) полезным.

Источник

Теория строения органических соединений. Типы связей в молекулах органических веществ

Теория к заданию 12 из ЕГЭ по химии

Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.

Основным постулатом теории Бутлерова является положение о химическом строении вещества, под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.

Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.

Этот порядок может быть отображен при помощи структурных формул, в которых валентности атомов обозначаются черточками: одна черточка соответствует единице валентности атома химического элемента. Например, для органического вещества метана, имеющего молекулярную формулу $СН_4$, структурная формула выглядит так:

Основные положения теории А. М. Бутлерова

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи.
  2. Свойства веществ определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т. е. химическим строением вещества.
  3. Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.

Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.

Органические вещества имеют ряд особенностей:

  1. В состав всех органических веществ входят углерод и водород, поэтому при горении они образуют углекислый газ и воду.
  2. Органические вещества построены сложно и могут иметь огромную молекулярную массу (белки, жиры, углеводы).
  3. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.
  4. Для органических веществ характерной является изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомерия — это явление существования разных веществ — изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.

Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.

Читайте также:  Плюсы и минусы дистанционного образования таблица

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Структурная изомерия

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле $С_4Н_<10>$ соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода $С_5Н_<12>$ возможны три изомера: пентан, изопентан и неопентан:

С увеличением числа атомов углерода в молекуле число изомеров быстро растет. Для углеводорода $С_<10>Н_<22>$ их уже $75$, а для углеводорода $С_<20>Н_<44>$ — $366 319$.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

Изомерия различных классов органических соединений (межклассовая изомерия) обусловлена различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую молекулярную формулу, но принадлежащих к разным классам. Так, молекулярной формуле $С_6Н_<12>$ соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан:

Изомерами являются углеводород, относящийся к алкинам, — бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу $С_4Н_<10>О$:

Структурными изомерами являются аминоуксусная кислота и нитроэтан, отвечающие молекулярной формуле $С_2Н_5NO_2$:

Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс-положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:

Геометрические изомеры различаются по физическим и химическим свойствам.

Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим. Примером такой молекулы является молекула $α$-аминопропионовой кислоты ($α$-аланина) $СН_3СН(NH_2)COOH$.

Молекула $α$-аланина ни при каком перемещении не может совпасть со своим зеркальным отражением. Такие пространственные изомеры называются зеркальными, оптическими антиподами, или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов — биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность $CH_2$. Например: $CH_4$ — метан, $C_2H_6$ — этан, $C_3H_8$ — пропан, $C_4H_<10>$ — бутан и т. д.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28’$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ — $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали — гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С—С$ связь, то он называется первичным ($Н_3С—СН_3$), если две — вторичным ($Н_3С—СН_2—СН_3$), если три — третичным (), а если четыре — четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ — одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена — двойная, в молекуле ацетилена — тройная), а соединения с кратными связями — ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ — гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной — $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):

При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.

Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Молекула Тип гибридизации Валентный угол Длина связи, нм Энергия связи, кДж/моль
$CH_3-CH_3$ $sp^3$ $109°5’$ $0.154$ $369$
$CH_2=CH_2$ $sp^2$ $120°$ $0.134$ $712$
$CH≡CH$ $sp^3$ $180°$ $0.120$ $962$

Радикал. Функциональная группа.

Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом, если же она имеет атомы других элементов, то она называется функциональной группой. Так, например, метил ($СН_3$—) и этил ($С_2Н_5$—) являются углеводородными радикалами, а оксигруппа (—$ОН$), альдегидная группа (), нитрогруппа (—$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Читайте также:  Бюджет моей семьи таблица для 3 класса

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.

Источник

ХИМИЧЕСКАЯ СВЯЗЬ
И СТРОЕНИЕ МОЛЕКУЛ

Лекция для учителей

Гибридизация атомных орбиталей

Рассмотрим образование химических связей в молекуле ВеF2:

В образовании связей участвуют 2s- и 2рх-орбитали возбужденного атома бериллия (рис. 8, а), которые должны перекрываться с соответствующими 2р-орбиталями атомов фтора. Из характера перекрывания следует, что связь, образованная 2рх-орбиталью бериллия, должна быть более прочной, чем связь, образованная его 2s-орбиталью. Направление образования первой связи строго определенное – вдоль оси х. Перекрывание 2s-орбитали не имеет преимущества в каком-либо направлении, поэтому угол между связями в молекуле ВеF2 может быть переменным.

Рис. 8. Образование гибридных sp-орбиталей y1 и y2 (плюс и минус – знаки волновой функции)

Однако эти выводы противоречат экспериментальным данным, которые однозначно указывают, что угол между связями составляет 180° и они равноценны. Оказалось, что подобное несоответствие теории и эксперимента наблюдается там, где связи центрального атома образованы орбиталями разного типа симметрии (например, s и р; р и d; s, р и d).

Для объяснения такого несоответствия Л.Полинг и Дж.Слейтер разработали теорию гибридизации. Сущность ее состоит в том, что близкие по энергии валентные орбитали с различной симметрией преобразуются в такое же количество одинаковых гибридных орбиталей, каждая из которых представляет собой продукт смешения исходных орбиталей. Гибридные орбитали более вытянуты в направлении образования химической связи и обеспечивают лучшее перекрывание.

В нашем примере в гибридизации участвуют одна 2s- и одна 2р-орбиталь атома бериллия. Такой случай называется sp-гибридизацией. Гибридные орбитали представляют собой линейные комбинации исходных атомных орбиталей с учетом знаков их частей – «лопастей» (для 2s-функции общепринято выбирать знак плюс):

где a1, a2, b1, b2 – нормированные коэффициенты; в данном случае

На рис. 8, б показана форма sp-гибридных орбиталей, графически построенных согласно формулам (1) и (2). При смешении волновых функций с одинаковыми знаками они складываются, а с противоположными – вычитаются. Поэтому гибридные волновые функции сильно деформированы вдоль оси симметрии и ориентированы вдоль нее. Линейное расположение (рис. 8, в) обеспечивает их минимальное отталкивание и минимальную энергию системы.

Отсюда становится понятным угол между связями (Be–F), равный 180°, и равноценность связей (рис. 9).

Гибридные орбитали y 1 и y 2 по энергии занимают промежуточное положение между исходными атомными орбиталями (s и p) (рис. 10). Суммарная энергия электронов на гибридных орбиталях даже несколько больше, чем на исходных. Несмотря на то, что на гибридизацию затрачивается энергия, лучшее перекрывание гибридных орбиталей по сравнению с исходными атомными не только компенсирует энергетические затраты, но и обеспечивает энергетический выигрыш. В противном случае гибридизация не происходит.

Рис. 10. Энергетическая диаграмма sp-гибридизации

sp-Гибридизация характерна для элементов II группы, но возможна и для атомов других элементов, образующих две s-связи с участием одной s- и одной р-орбиталей.

Участие в образовании связей одной s- и двух р-орбиталей центрального атома приводит к sp 2 -гибридизации. Гибридизация такого типа характерна для соединений элементов III группы.

Рассмотрим ее на примере молекулы ВF3. В возбужденном атоме бора при образовании связей происходит гибридизация трех орбиталей – 2s, 2рх, 2рz:

(Здесь у двух атомов фтора показаны только 2р-электроны, образующие связи.) Три гибридные орбитали (sp 2 )g в соответствии с принципом наименьшей энергии ориентируются так, чтобы отталкивание между ними было минимальным. Этому отвечают углы между осями гибридных орбиталей, равные 120° (рис. 11). Поэтому молекула ВF3 – плоская, связи в ней – равноценные, направленные по углам правильного треугольника.

Рис. 11. sp 2 -Гибридизация: а – исходные 2s-, 2рx— и 2рz-орбитали; б – гибридные 2(sp 2 )g—орбитали

sp 3 -Гибридизация, в которой участвуют s-орбиталь и все три p-орбитали, характерна для соединений элементов IV группы периодической системы, в частности для насыщенных углеводородов. Рассмотрим молекулу метана СН4.

В этом случае (при sp 3 -гибридизации) образуются четыре sp 3 -гибридные орбитали, направленные в пространстве по углам тетраэдра. Углы между осями гибридных орбиталей составляют 109,46° (рис. 12). Рассмотренный ранее ион аммония NH4 + также имеет тетраэдрическое строение благодаря sp 3 -гибридизации.

Рис. 12. Ориентация sp 3 -гибридных орбиталей в молекуле СН4

В гибридизации могут участвовать и d-орбитали внешнего или предвнешнего квантового уровня. При образовании комплексного иона [АlF6] 3– происходит sp 3 d 2 -гибридизация, в которой участвуют вакантные d-орбитали:

Такие шесть гибридных орбиталей направлены по углам октаэдра. Угол между связями 90° (рис. 13).

Рис. 13. Ориентация sp 3 d 2 — и d 2 sp 3 -гибридных орбиталей

В комплексном ионе [Fе(СN)6] 4– в гибридизации участвуют «внутренние» d-орбитали предвнешнего квантового слоя. При возбуждении иона Fе 2+ , входящего в состав комплекса, происходит спаривание 3d-электронов и переход в гибридное валентное состояние:

Связи образуются в результате взаимодействия вакантных гибридных d 2 sp 3 -орбиталей иона *Feg 2+ и не-поделенных пар электронов шести ионов СN – . Тип гибридизации – d 2 sp 3 . Геометрическая форма комплекса также октаэдрическая.

Гибридизация с участием d-орбиталей дает и другие структуры молекул и сложных ионов.

Таким образом, направленность валентности обусловлена ориентацией гибридных орбиталей в пространстве. В обобщенной форме это представлено в табл. 2.

Участие орбиталей неподеленных пар электронов в гибридизации

Оказалось, что конфигурация не всех молекул может быть объяснена схемой, приведенной в табл. 2. Так, например, можно представить себе, что в молекуле аммиака NH3 три связи N–H образованы «чистыми» 2р-орбиталями азота.

Пространственная конфигурация молекул и ионов

Молекула должна иметь пирамидальную форму: в вершине пирамиды – атом азота, угол между связями – 90°. Однако экспериментально измеренный угол составляет

107,8°, что значительно лучше согласуется с тетраэдрической конфигурацией, характерной для sp 3 -гибридизации. Это можно объяснить, если предположить, что в гибридизации принимает участие орбиталь неподеленной (несвязывающей) пары электронов:

Перекрывание орбиталей в молекуле NH3 показано на рис. 14.

Участие в гибридизации орбиталей неподеленных пар электронов, не образующих связей, называют явлением полной гибридизации.

С этих же позиций участием орбиталей двух неподеленных пар электронов в sp 3 -гибридизации можно объяснить строение молекулы воды, в которой угол между связями О–Н равен

Вследствие более сильного отталкивающего действия неподеленных (несвязывающих) электронных пар валентные углы в молекулах NН3 и Н2О оказываются несколько меньше тетраэдрического.

Изменение угла между связями Э–Н

Для третьего и последующих периодов из-за увеличения размеров атомов и уменьшения плотности электронных облаков полная гибридизация не происходит, связи образуются р-орбиталями. Это иллюстрирует табл. 3

Электроотрицательность. Полярность ковалентной связи и полярность молекулы.
Ионная связь как крайний случай ковалентной полярной связи

В гомоядерных молекулах (Н2, F2 и др.) электронная пара, образующая связь, в равной степени принадлежит каждому из атомов, поэтому центры положительного и отрицательного зарядов в молекуле совпадают. Такие молекулы неполярны.

Однако в гетероядерных молекулах вклад в связь волновых функций разных атомов неодинаков. Вблизи одного из атомов появляется избыточная электронная плотность, т. е. избыточный отрицательный заряд, а вблизи другого – положительный. В этом случае говорят о смещении электронной пары от одного атома к другому, но понимать это надо не буквально, а лишь как увеличение вероятности нахождения электронной пары вблизи одного из ядер молекулы.

Читайте также:  Таблица альдостерон рениновое соотношение

Для определения направления такого смещения и полуколичественной оценки его величины введено понятие «электроотрицательность».

Имеется несколько шкал электроотрицательности. Однако элементы располагаются в ряду по электроотрицательности в одинаковом порядке, поэтому отличия несущественны, а шкалы электроотрицательности вполне сопоставимы.

Электроотрицательность, по Малликену, есть полусумма энергии ионизации и сродства к электрону:

Валентная электронная пара смещается к более электроотрицательному атому.

Удобнее пользоваться не абсолютными значениями электроотрицательности, а относительными. За единицу принята электроотрицательность лития. Тогда относительную электроотрицательность какого-либо элемента А можно выразить следующим образом:

Наименьшую электроотрицательность имеют тяжелые щелочные металлы (XFr = 0,7). Самый электроотрицательный элемент – фтор: XF = 4,0. В периодах с увеличением номера элемента электроотрицательность растет, а по подгруппам – уменьшается (табл. 4).

Относительная электроотрицательность s— и р-элементов

Полярность связи в двухатомных молекулах определяется смещением валентной электронной пары и количественно характеризуется дипольным моментом молекулы. Он равен произведению расстояния между ядрами в молекуле и эффективного заряда d , соответствующего этому расстоянию:

Поскольку считают вектором, направленным от положительного к отрицательному заряду, дипольный момент также является вектором и имеет то же направление. Единицей измерения дипольного момента является дебай D (1 D = 3,33•10 –30 Кл•м) (кулон-метр).

Дипольный момент сложной молекулы определяется как векторная сумма дипольных моментов всех связей. Поэтому если молекула АВn симметрична относительно линии каждой связи, суммарный дипольный момент такой неполярной молекулы, несмотря на полярность связей А–В, равен нулю:

Примером могут служить рассмотренные ранее симметричные молекулы, связи в которых образованы только гибридными орбиталями: ВеF2, ВF3, СН4, SF6 и др. (рис. 15, а).

Молекулы, связи в которых образованы негибридными орбиталями, а также гибридными орбиталями с участием орбиталей неподеленных пар электронов, не обладают такой симметрией. Примерами таких полярных молекул являются: H2S, NH3, H2O и др. (рис. 15, б).

Как уже отмечалось, чем больше разность электроотрицательностей атомов, образующих связь, тем сильнее смещается валентная электронная пара, тем более полярна связь и, следовательно, больше эффективный заряд d, что иллюстрирует табл.5.

Изменение характера связи в ряду соединений элементов 2-го периода со фтором

В полярной связи можно условно выделить две составляющие: ионную, обусловленную электростатическим притяжением, и ковалентную, обусловленную перекрыванием орбиталей. По мере увеличения разности величин электроотрицательности D X валентная электронная пара все сильнее смещается к атому фтора, который приобретает все более отрицательный эффективный заряд. Увеличивается вклад в связь ионной составляющей, соответственно уменьшается доля ковалентной составляющей. Количественные изменения переходят в качественные: в молекуле LiF электронная пара практически полностью принадлежит фтору, а его эффективный заряд приближается к единице, т. е. к заряду электрона. Можно считать, что образовались два иона: катион Li + и анион F – , а связь обусловлена только их электростатическим притяжением (ковалентной составляющей можно пренебречь).

Такую связь называют ионной. Ее можно рассматривать как крайний случай ковалентной полярной связи.

Электростатическое поле не имеет преимущественных направлений. Поэтому ионная связь в отличие от ковалентной не направлена. Ион взаимодействует с любым количеством ионов противоположного заряда. Этим обусловлено еще одно отличительное свойство ионной связи – ненасыщаемость.

Провести границу между ковалентной полярной и ионной связями можно лишь условно. Для двухатомных молекул в газообразном состоянии считают, что при разности электроотрицательностей элементов D Х > 2,5 имеет место ионная связь. В растворах полярных растворителей, а также в кристаллическом состоянии сильное влияние оказывают молекулы растворителя и соседние частицы в узлах кристаллической решетки. Поэтому ионный характер связи проявляется при значительно меньшей разности величин электроотрицательности. Практически можно считать, что связь между типичными металлами и неметаллами в растворах и кристаллах ионная.

Окончание следует

В.И.Елфимов,
профессор Московского
государственного открытого университета

Продолжение. Начало см. в № 21/2001

Источник

Гибридизация электронных орбиталей и геометрия молекул

В 1930 г. Слейтером и Л. Полингом была развита теория образования ковалентной связи за счет перекрывания электронных орбиталей – метод валентных связей. В основе этого метода лежит метод гибридизации, который описывает образование молекул веществ за счет «смешивания» гибридных орбиталей («смешиваются» не электроны, а орбитали).

Определение типа гибридизации молекул с ковалентной связью

Определить тип гибридизации можно только для молекул с ковалентной связью типа АВn, где n больше или равно двум, А – центральный атом, В – лиганд. В гибридизацию вступают только валентные орбитали центрального атома.

Определим тип гибридизации на примере молекулы BeH2.

Первоначально записываем электронные конфигурации центрального атома и лиганда, рисуем электронно-графические формулы.

Атом бериллия (центральный атом) имеет вакантные 2p-орбитали, поэтому, чтобы принять по одному электрону от каждого атома водорода (лиганд) для образования молекулы BeH2 ему необходимо перейти в возбужденное состояние:

Образование молекулы BeH2 происходит за счет перекрывания валентных орбиталей атома Be

* красным цветом обозначены электроны водорода, черным – бериллия.

Тип гибридизации определяют по тому, какие орбитали перекрылись, т.о., молекула BeH2 находитс в sp – гибридизации.

Помимо молекул состава ABn, методом валентных связей можно определить тип гибридизации молекул с кратными связями. Рассмотрим на примере молекулы этилена C2H4. В молекуле этилена кратная двойная связь, которая образована \tau-и \pi–связями. Чтобы определить гибридизацию, записываем электронные конфигурации и рисуем электронно-графические формулы атомов, входящих в состав молекулы:

6C 2s 2 2s 2 2p 2

У атома углерода имеется еще одна вакантная p-орбиталь, следовательно, чтобы принять 4 атома водорода ему необходимо перейти в возбужденное состояние:

Одна p-орбиталь необходима для образования -связи (выделена красным цветом), поскольку -связь образуется за счет перекрывания «чистых» (негибридных) p — орбиталей. Остальные валентные орбитали идут в гибридизацию. Таким образом этилен находится в гибридизации sp 2 .

Определение геометрической структуры молекул

Геометрическую структуру молекул, а также катионов и анионов состава АВn можно с помощью метода Гиллеспи. В основе этого метода – валентные пары электронов. На геометрическую структуру оказывают влияние не только электроны, участвующие в образовании химической связи, но и неподеленные электронные пары. Каждую неподеленную пару электронов в методе Гиллеспи обозначают Е, центральный атом – А, лиганд – В.

Если неподеленных электронных пар нет, то состав молекул может быть АВ2 (линейная структура молекулы), АВ3 (структура плоского треугольника), АВ4 (тетраэдрическая структура), АВ5 (структура тригональной бипирамиды) и АВ6 (октаэдрическая структура). От базисных структур могут быть получены производные, если вместо лиганда появляется неподеленная электронная пара. Например: АВ3Е (пирамидальная структура), АВ2Е2 (угловая структура молекулы).

Чтобы определить геометрическую структуру (строение ) молекулы необходимо определить состав частицы, для чего вычисляют количество неподеленных лектронных пар (НЕП):

НЕП = (общее число валентных электронов – число электронов, пошедших на образование связи с лигандами) / 2

На связь с H, Cl, Br, I, F уходит по 1-му электрону от А, на связь с O – по 2 электрона, а на связь с N – по 3 электрона от центрального атома.

Рассмотрим на примере молекулы BCl3. Центральный атом – B.

5B 1s 2 2s 2 2p 1

НЕП = (3-3)/2 = 0, следовательно неподеленных электронных пар нет и молекула имеет структуру АВ3 – плоский треугольник.

Подробно геометрическое строение молекул разного состава представлено в табл. 1.

Таблица 1. Пространственное строение молекул

Источник

Adblock
detector