Меню

Таблица кодонов и антикодонов

Разница между кодоном и антикодоном

Кодон и антикодон представляют собой нуклеотидные триплеты, которые определяют конкретную аминокислоту в полипептиде. Существует определенный набор правил для хранения генетической информации в виде

Разница между кодоном и антикодоном

Содержание:

  • Главное отличие — Кодон против Антикодона
  • Что такое кодон
  • Что такое Антикодон
  • Разница между кодоном и антикодоном

Главное отличие — Кодон против Антикодона

Кодон и антикодон представляют собой нуклеотидные триплеты, которые определяют конкретную аминокислоту в полипептиде. Существует определенный набор правил для хранения генетической информации в виде нуклеотидной последовательности на молекулах ДНК или мРНК для синтеза белков. Этот конкретный набор правил называется генетическим кодом. Кодон представляет собой группу из трех нуклеотидов, особенно на мРНК. Антикодон присутствует на молекулах тРНК. главное отличие между кодоном и антикодоном заключается в том, что Кодон — это язык, который представляет собой аминокислоту на молекулах мРНК, тогда как антикодон — это нуклеотидная последовательность комплемента кодона на молекулах тРНК.

В этой статье рассматриваются,

1. Что такое кодон
— определение, особенности
2. Что такое Антикодон
— определение, особенности
3. В чем разница между кодоном и антикодоном

Что такое кодон

Кодон представляет собой последовательность из трех нуклеотидов, которая указывает одну аминокислоту в полипептидной цепи. Каждый ген, который кодирует конкретный белок, состоит из последовательности нуклеотидов, которые представляют аминокислотную последовательность этого конкретного белка. Гены используют универсальный язык, генетический код, чтобы хранить аминокислотные последовательности белков. Генетический код состоит из нуклеотидных триплетов, которые называются кодонами. Например, кодон TCT представляет собой аминокислоту серин. Шестьдесят один кодон может быть идентифицирован, чтобы указать двадцать незаменимых аминокислот, необходимых для трансляции.

Рамка для чтения

Конкретная нуклеотидная последовательность в молекуле одноцепочечной ДНК состоит из трех рамок считывания в направлении от 5 ‘до 3’ цепи. Учитывая нуклеотидную последовательность в Рисунок 1первая рамка считывания начинается с первого нуклеотида А. Первая рамка считывания отображается синим цветом. Он содержит кодоны AGG TGA CAC CGC AAG CCT TAT ATT AGC. Вторая рамка считывания начинается со второго нуклеотида G, который показан красным цветом. Содержит кодоны GGT GAC ACC GCA AGC CTT ATA TTA. Третья рамка считывания начинается с третьего нуклеотида G, который показан зеленым цветом. Содержит кодоны GTG ACA CCG CAA GCC TTA TAT TAG.

Рисунок 1: Чтение Фреймов

Поскольку ДНК представляет собой двухцепочечную молекулу, в двух цепях можно найти шесть рамок считывания. Но только одна рамка для чтения может быть переведена. Эта рамка считывания называется открытой рамкой считывания. Кодон может быть идентифицирован только с открытой рамкой считывания.

Старт / Стоп Кодон

Открытая рамка считывания определяется в основном наличием стартового кодона, кодируемого мРНК. Универсальным стартовым кодоном является AUG, который кодирует аминокислоту метионин в эукариотах. У прокариот AUG кодирует формилметионин. Эукариотические открытые рамки считывания прерываются наличием интронов в середине рамки. Трансляция останавливается на стоп-кодоне в открытой рамке считывания. На мРНК обнаружены три универсальных стоп-кодона: UAG, UGA и UAA. Серия кодонов на фрагменте мРНК показана в фигура 2.

Рисунок 2: Серия кодонов на мРНК

Влияние мутаций

Ошибки возникают в процессе репликации, который вносит изменения в нуклеотидную цепь. Эти изменения называются мутациями. Мутации могут изменить аминокислотную последовательность полипептидной цепи. Два типа точечных мутаций — бессмысленные мутации и бессмысленные мутации. Миссенс-мутации изменяют свойства полипептидной цепи, изменяя аминокислотный остаток, и могут вызывать такие заболевания, как серповидноклеточная анемия. Нонсенс-мутации изменяют нуклеотидную последовательность стоп-кодона и могут вызывать талассемию.

вырождение

Избыточность, возникающая в генетическом коде, называется вырождением. Например, кодоны UUU и UUC оба указывают аминокислоту фенилаланин. Таблица кодонов РНК показана в рисунок 3.

Рисунок 3: РНК-кодон

Смещение использования кодонов

Частота встречаемости конкретного кодона в геноме называется смещением использования кодона. Например, частота встречаемости кодона UUU составляет 17,6% в геноме человека.

вариации

Некоторые вариации могут быть обнаружены в стандартном генетическом коде при рассмотрении человеческого митохондриального генома. Немного Mycolasma виды также указывают кодон UGA как триптофан, а не стоп-кодон. Немного Кандида виды указывают кодон, UCG как серин.

Что такое Антикодон

Трехнуклеотидная последовательность на тРНК, которая комплементарна последовательности кодона на мРНК, называется антикодоном. Во время трансляции антикодон является комплементарным основанием, соединенным с кодоном посредством водородных связей. Следовательно, каждый кодон содержит соответствующий антикодон на разных молекулах тРНК. Дополнительное спаривание оснований антикодона с его кодоном показано на рисунок 4.

Рисунок 4: Дополнительные пары оснований

Колебание основания

Способность одного антикодона образовывать пару с более чем одним кодоном в мРНК называется спариванием основания вобуляции. Спаривание основания колебания происходит из-за потери первого нуклеотида на молекуле тРНК. Инозин присутствует в первой нуклеотидной позиции на антикодоне тРНК. Инозин может образовывать водородные связи с различными нуклеотидами. Из-за наличия спаривания оснований вобуляции, аминокислота определяется третьей позицией кодона. Например, глицин указан GGU, GGC, GGA и GGG.

Передача РНК

Для определения двадцати незаменимых аминокислот можно найти шестьдесят один тип тРНК. Из-за спаривания оснований вобуляции количество отдельных тРНК уменьшается во многих клетках. Минимальное количество отдельных тРНК, необходимых для трансляции, составляет тридцать один. Структура молекулы тРНК показана на рисунок 5, Антикодон показан серым цветом. Стержень акцептора, который показан желтым цветом, содержит хвост CCA на 3′-конце молекулы. Указанная аминокислота ковалентно связана с 3′-гидроксильной группой хвостов CCA. Связанная с аминокислотами тРНК называется аминоацил-тРНК.

Рисунок 5: Перенос РНК

Разница между кодоном и антикодоном

Место нахождения

кодоны: Кодон находится на молекуле мРНК.

антикодонный: Антикодон находится в молекуле тРНК.

Дополнительный характер

кодоны: Кодон комплементарен нуклеотидному триплету в ДНК.

антикодонный: Антикодон дополняет кодон.

непрерывность

кодоны: Кодон последовательно присутствует в мРНК.

антикодонный: Антикодон индивидуально присутствует на тРНК.

функция

кодоны: Кодон определяет положение аминокислоты.

антикодонный: Anticodon приносит указанную аминокислоту кодоном.

Заключение

Кодон и антикодон участвуют в позиционировании аминокислот в правильном порядке, чтобы синтезировать функциональный белок во время трансляции. Оба они являются нуклеотидными триплетами. Можно найти шестьдесят один отдельный кодон, определяющий двадцать незаменимых аминокислот, необходимых для синтеза полипептидной цепи. Таким образом, шестьдесят одна отдельная тРНК необходима для комплементарной пары оснований с шестидесяти одним кодоном. Но из-за наличия спаривания оснований вобуляции количество необходимых тРНК уменьшается до тридцати одного. Антикодонные комплементарные пары оснований с кодоном рассматриваются как универсальная особенность. Поэтому ключевое различие между кодоном и антикодоном заключается в их дополнительной природе.

Источник



Таблицы соответствия кодонов мРНК и аминокислот

Генетический код — свойственный всем живым организмам способ кодирования последовательности аминокислотных остатков в составе белков при помощи последовательности нуклеотидов в составе нуклеиновой кислоты.

В ДНК используется четыре азотистых основания — аденин (А) , гуанин (G) , цитозин (С) , тимин (T) , которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Читайте также:  Таблицы направлений для числа гуа

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам, изображены на рисунке. К последовательности триплетов (кодонов) в нуклеиновой кислоте, а, следовательно, и к последовательности аминокислотных остатков в белковой молекуле понятие «генетический код» не имеет отношения. Генетический код — это способ записи, а не содержание записи.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

Источник

Транскрипция и трансляция

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом «генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе 🙂

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК). тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.

Транскрпиция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик» выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

    Инициация (лат. injicere — вызывать)

Образуется несколько начальных кодонов иРНК.

Элонгация (лат. elongare — удлинять)

Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.

Терминация (лат. terminalis — заключительный)

Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции. Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

    Инициация

Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц. Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту, соответствующую кодону АУГ — метионин.

Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин). В основе этого также лежит принцип комплементарности.

Трансляция

Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

Полисома

Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального, третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота 🙂

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк: это один из трех нонсенс-кодонов, завершающих синтез белка.

Читайте также:  Таблица ворд стала рисунком
Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Задача на транскрипцию и трансляцию

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.

Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК, так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%. 100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Кодон — это смысловой триплет РНК. Особенности генетического кода

Реализация генетического материала любой клетки основана на синтезе определенного набора белков, записанного в последовательности ДНК. Передача этой информации осуществляется через молекулы матричных РНК (мРНК), на основе которой строятся аминокислотные цепи. Так как белки и нуклеиновые кислоты в химическом отношении абсолютно различны, механизм комплементарного сопряжения осуществляется с участием транспортных РНК, которые взаимодействуют с матричной цепью по системе кодон-антикодон.

Особенности расшифровки последовательности мРНК

Созвездие Киль: характеристика и звездный состав Вам будет интересно: Созвездие Киль: характеристика и звездный состав

Кроме разности химической природы белков и нуклеотидов в переводе генетической информации есть еще одна проблема — количественное несоответствие в разнообразии звеньев. Молекула РНК образована всего лишь четырьмя типами нуклеотидов, тогда как полипептидная цепь может включать до 20 видов аминокислот. По этой причине кодирующей единицей матрицы РНК является не один нуклеотид, а три. Эта последовательность называется триплетом.

Различные сочетания нуклеотидов в составе триплета дают 64 комбинации, что даже превышает необходимое количество вариантов, равное 20. Это явление говорит об избыточности генетического кода.

Триплетная система

Другое название смыслового триплета РНК — кодон. Эта последовательность взаимодействует с комплементарным ей антикодоном, содержащимся в молекуле транспортной РНК, которая соответствует конкретной аминокислоте. Таким образом осуществляется определяется очередность звеньев в первичной структуре белка.

Триплетная система была расшифрована в начале 1960-х годов.

Что такое кодон

Так как генетический код избыточен, некоторые аминокислоты обозначаются не одним, а несколькими кодонами. Кроме того, есть триплеты, которые вообще не содержат информацию о звене белковой последовательности. Эти кодоны нужны для остановки процесса трансляции. К ним относят UAA, UAG и UGA.

Таким образом, кодон — это состоящая из трех звеньев последовательность нуклеотидов матричной РНК, обозначающая либо аминокислоту, либо остановку трансляции. Значения всех триплетов занесены в таблицу генетического кода.

Кроме трех стоп-кодонов существует также триплет, который сигнализирует о начале транслирующего участка мРНК, — AUG. Однако, в отличие от терминирующих последовательностей, этот кодон содержит информацию об аминокислоте (метионине). Генетический код универсален для всех видов организмов.

Взаимодействие кодонов с транспортными РНК

В молекуле тРНК есть 2 функциональных участка, один из которых взаимодействует с матричной РНК, а другой связывается с аминокислотой. Антикодон содержит нуклеотиды, комплементарные последовательности кодона мРНК. Характер взаимодействия аналогичен транскрипции, только спаривание происходит группами по 3 нуклеотида.

Некоторые тРНК не требуют точного комплементарного соответствия не со всеми звеньями триплета, а только с первыми двумя. Толерантность к третьему нуклеотиду в кодоне называется качанием, благодаря которому одна тРНК может связываться с несколькими видами триплетов, отличающихся друг от друга только звеном в последней позиции.

Источник

Таблица кодонов и антикодонов

§ 16. ПЕРЕНОС ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ В КЛЕТКЕ: ТРАНСляцИЯ

Синтез белка (трансляция) в клетке представляет собой, пожалуй, самый сложный биосинтетический процесс. В нем участвует очень большое число белков, иРНК, тРНК, рРНК в составе рибосом и другие молекулы. При его протекании затрачивается большое количество энергии. Различают несколько стадий биосинтеза белка: активация аминокислот, инициация, элонгация и терминация.

Читайте также:  Таблица гостов для стропов

Соответствие между полинуклеотидной и полипептидной последовательностями

Синтез белка отличается от других матричных процессов (репликации, транскрипции) тем, что между матрицей (иРНК) и продуктом (белком) нет комплементарного соответствия. Для расшифровки нуклеотидной последовательности необходим генетический код. Он устанавливает соответствие между нуклеотидной последовательностью иРНК и синтезируемой на ней полипептидной цепью. Единицей генетического кода является кодон. Кодон представляет собой последовательность, состоящую из трех нуклеотидов, т.е. триплет. Всего существует 64 кодона. Из них 61 кодон используется для кодирования аминокислот. Три же кодона не кодируют ни одну из аминокислот и служат сигналом для остановки синтеза полипептидной цепи. Это так называемые терминирующие, или нонсенс-кодоны. Каждому кодону (из 61) соответствует строго определенная аминокислота, например, триплету УУУ соответствует аминокислота фенилаланин (таблица 6), т.е. код однозначен. Следовательно, зная последовательность иРНК, можно определить аминокислотную последовательность закодированного в ней полипептида:

Трансляция иРНК (считывание информации) начинается с инициирующего триплета – АУГ, и далее расшифровывается каждый последующий триплет в направлении от 5’-конца молекулы иРНК к 3’-концу, заканчивается синтез полипептида на одном из трех терминирующих кодонов (рис. 52). Синтез же полипептидной цепи начинается с N-конца.

Рис. 52. Кодирующая последовательность начинается с инициирующего триплета и заканчивается терминирующим

Как ранее отмечалось, существуют 20 стандартных аминокислот. Этим 20 аминокислотам соответствует 61 кодон. Таким образом, почти каждой стандартной аминокислоте соответствует несколько кодонов, т.е. одна аминокислота может быть закодирована несколькими кодонами. Из этого следует, что нельзя однозначно перевести аминокислотную последовательность данного белка в нуклеотидную последовательность иРНК.

Примечание: Терм. 1 – терминирующий кодон

Иниц. 2 – инициирующий кодон

Информационная РНК

Информационные РНК (их еще называют матричные РНК (мРНК)) служат матрицами для биосинтеза полипептидных цепей. Они содержат линейную последовательность кодонов, которые и определяют первичную структура белка. иРНК – это одноцепочечные молекулы. Одна молекула иРНК может кодировать одну или несколько полипептидных цепей. Если иРНК несет информацию об одной полипептидной цепи, то ее называют моноцистронной, если о двух или более – полицистронной. иРНК прокариот бывают часто полицистронными, иРНК эукариот являются моноцистронными. На 3’- и 5’- концах иРНК содержат некодирующие последовательности. Полицистронные иРНК также могут содержать нетранслируемые межгенные области, которые разделяют участки, кодирующие полипептидные цепи. иРНК эукариот на 5’-конце имеет кэп, а на 3’- конце – полиА. На рис. 53 представлены схемы строения иРНК прокариот и эукариот.

Рис. 53. Информационные РНК

Транспортные РНК

тРНК трансформируют генетическую информацию, закодированную в иРНК, в информацию о первичной структуре белка.

тРНК – это небольшие молекулы, состоящие из 73 – 93 нуклеотидов, что соответствует относительной молекулярной массе 24000 – 31000. Каждой аминокислоте соответствует одна или более тРНК. На рис. 54 показано строение тРНК. Молекула тРНК имеет вид клеверного листа. Между азотистыми основаниями в ее молекуле образуются водородные связи. На 3’-конце всех тРНК находится тринуклеотидная последовательность Ц-Ц-А. В тРНК выделяют акцепторную и антикодоновую ветви. К акцепторной ветви присоединяется аминокислота. А антикодоновая ветвь содержит антикодон, — триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Более подробно о назначении акцепторной ветви и антикодона поговорим чуть позже.

Интересно знать! Обнаружены тРНК, которые обусловливают нестандартное считывание кодовой таблицы, причем антикодоны этих тРНК некомплементарны считываемым кодонам. Обнаружены и альтернативы в чтении кода. Так терминирующий кодон УГА у разных объектов кодирует необычную аминокислоту – селено-цистеин, но только при условии, что этот кодон оказывается в определенной точке гена.

Рибосомы

Рибосомы – это субклеточные структуры, являющиеся местом синтеза белка. Рибосомы состоят из двух субъединиц – большой и малой. В состав рибосом входят белки и рРНК (рис. 55). В прокариотических рибосомах присутствуют три вида рРНК, в эукариотических – 4. рРНК играют важную роль в структуре и биосинтетической функции рибосом.

Рис. 55. Рибосомы

Активация аминокислот

На этой стадии каждая из 20 аминокислот присоединяется к определенной тРНК. При этом используется энергия АТФ. Эти реакции катализируются 20 различными ферментами, называемыми аминоацил-тРНК-синтетазами. Каждая аминоацил-тРНК-синтетаза способна узнавать только одну определенную аминокислоту и соответствующую ей тРНК. Они присоединяют аминокислотный остаток к 2’- или 3’-гидроксильной группе 3’-концевого нуклеотида. Суммарная реакция активации аминокислоты выглядит так:

Инициация белкового синтеза

Процессы трансляции эукариотической иРНК и прокариотической иРНК в общих чертах сходны. Инициация начинается с присоединения к малой субъединице рибосомы иРНК и первой аминоацил-тРНК (аа-тРНК), антикодон которой комплементарен инициирующему кодону АУГ (рис. 56). После связывания антикодона тРНК с инициирующим кодоном происходит присоединение большой субъединицы рибосомы. Образовался инициирующий комплекс, в котором инициирующая аа-тРНК находится в Р (пептидильном)-центре, а А (аминоацильный) – центр свободен. Инициирующей аа-тРНК у эукариот является метионил-тРНК, у прокариот – формилметионил-тРНК, образующийся при модификации метионил-тРНК. Для осуществления инициации трансляции необходима энергия. Ее поставляет ГТФ. Поставляемая энергия высвобождается при гидролизе ГТФ до ГДФ и фосфата.

Рис. 56. Инициация трансляции. Инициирующей аа-тРНК у эукариот является метионил-тРНК

Элонгация белкового синтеза

В процессе элонгации (рис. 57) происходит наращивание полипептидной цепи. При этом присоединение каждого аминокислотного остатка происходит в три стадии. Этот цикл продолжается до тех пор, пока рибосома не достигнет терминирующего кодона. На первой стадии в А-центре происходит связывание следующей аа-тРНК, антикодон которой комплементарен следующему за инициирующим кодону. Между кодоном и антикодоном возникает комплементарное взаимодействие. Далее происходит образование пептидной связи за счет пептидилтрансферазной реакции, в результате которой метионин (у прокариот формилметионин) переносится на a-аминогруппу аа-тРНК, находящуюся в А-центре. В результате образуется дипетидил-тРНК. Катализирует этот процесс рРНК большой субъединицы рибосомы. После транспептидазной реакции рибосома перемещается на один кодон в направлении от 5’- к 3’-концу мРНК. Дипептидил-тРНК из А-центра перемещается в Р-центр, А-центр освобождается, здесь оказывается следующий кодон. Инициирующая тРНК покидает рибосому. Рибосома готова к новому циклу элонгации. Далее присоединяется третий аминокислотный остаток, потом – четвертый и т.д. По мере движения рибосомы вдоль иРНК аминокислотные остатки один за другим добавляются к растущей полипептидной цепи. В процессе трансляции затрачивается энергия, освобождающаяся при гидролизе ГТФ до ГДФ и фосфата.

Терминация

Терминация белового синтеза наступает, как только в А-центре окажется один из терминирующих кодонов: УАГ, УГА, УАА. В этом процессе участвуют специфические белки – факторы терминации. В результате терминации происходит гидролитическое отщепление полипептида от тРНК, тРНК отделяется от рибосомы, рибосома диссоциируют на субъединицы. Поставщиком энергии для терминации синтеза белка так же, как и для инициации и элонгации, является ГТФ.

Источник

Adblock
detector