Меню

Таблица истинности элемента 2и или нет

Таблица истинности элемента 2и или нет

Так же, как и стандартные Булевы выражения, информация на входах и выходах различных логических элементов или логических схем может быть собрана в единую таблицу – таблицу истинности.

Таблица истинности дает наглядное представление о системе логических функций. В таблице истинности отображаются сигналы на выходах логических элементов при всех возможных комбинациях сигналов на их входах.

В качестве примера, рассмотрим логическую схему с двумя входами и одним выходом. Входные сигналы отметим как «А» и «В», а выход «Q». Есть четыре (2²) возможных комбинаций входных сигналов, которые можно подать на эти два входа («ON — наличие сигнала» и «OFF — отсутствие сигнала»).

Однако, когда речь идет о логических выражениях и, особенно о таблице истинности логических элементов, вместо общего понятия «наличие сигнала» и «отсутствие сигнала» используют битные значения, которые представляют собой логический уровень «1» и логический уровень «0» соответственно.

Тогда четыре возможные комбинации «А» и «В» для 2-входного логического элемента можно представить в следующем виде:

  1. «OFF» — «OFF» или (0, 0)
  2. «OFF» — «ON» или (0, 1)
  3. «ON» — «OFF» или (1, 0)
  4. «ON» — «ON» или (1, 1)

Следовательно, у логической схемы имеющей три входа будет восемь возможных комбинаций (2³) и так далее. Для обеспечения легкого понимания сути таблицы истинности, мы будем изучать ее только на простых логических элементах с числом входов не превышающим двух. Но, несмотря на это, принцип получения логических результатов для многовходных элементов схемы остается таким же.

Практически, таблица истинности состоит из одного столбца для каждой из входных переменных (например, А и В), и один последний столбец для всех возможных результатов логической операции (Q). Следовательно, каждая строка таблицы истинности содержит один из возможных вариантов входных переменных (например, A = 1, B = 0), и результат операции с этими значениям.

Таблица истинности

Элемент «И»

Для логического элемента «И» выход Q будет содержать лог.1, только если на оба входа («А» и «В») будет подан сигнал лог.1

Микросхемы, содержащие логический элемент «И»:

Источник



Логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и их таблицы истинности

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе — также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются в двоичной системе счисления — на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня — это логическая единица 1 — обозначает истинное значение операнда, а напряжение низкого уровня 0 — значение ложное. 1 — ИСТИНА, 0 — ЛОЖЬ.

Логический элемент — элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

Логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и их таблицы истинности

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Интегральная микросхема

Традиционно логические элементы выпускаются в виде специальных радиодеталей — интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) — являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» — конъюнкция, логическое умножение, AND

«И» — логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. — элемент «И» с двумя входами, с четырьмя входами и т. д.

Таблица истинности для элемента 2И

Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

Читайте также:  Монеты 1961 года стоимость таблица стоимости

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах — прямоугольник с символом «&».

Логический элемент «ИЛИ» — дизъюнкция, логическое сложение, OR

«ИЛИ» — логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.

Таблица истинности для элемента 2ИЛИ

Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах — прямоугольник с символом «1».

Логический элемент «НЕ» — отрицание, инвертор, NOT

«НЕ» — логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для элемента НЕ

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах — прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» — конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» — логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».

Таблица истинности для элемента И-НЕ

Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы — три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой логической операции в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» — дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» — логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» — инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».

Таблица истинности для элемента ИЛИ-НЕ

Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае — на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» — сложение по модулю 2, XOR

«исключающее ИЛИ» — логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах — как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной — как «ИЛИ», только вместо «1» будет написано «=1».

Таблица истинности

Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль — в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Цифровые логические элементы

Любые цифровые микросхемы строятся на основе простейших логических элементов:

Рассмотрим устройство и работу цифровых логических элементов подробнее.

Инвертор

Простейшим логическим элементом является инвертор, который просто изменяет входной сигнал на прямо противоположное значение. Его логическая функция записывается в следующем виде:

где черта над входным значением и обозначает изменение его на противоположное. То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 1. Так как вход у инвертора только один, то его таблица истинности состоит всего из двух строк.

Таблица 1. Таблица истинности логического элемента инвертора

In Out
1
1

В качестве логического инвертора можно использовать простейший усилитель с транзистором, включенном по схеме с общим эмиттером (или истоком для полевого транзистора). Принципиальная схема логического элемента инвертора, выполненная на биполярном n-p-n транзисторе, приведена на рисунке 1.

Читайте также:  Типы размножения организмов бесполое размножение таблица

Рисунок 1. Схема простейшего логического инвертора

Микросхемы логических инверторов могут обладать различным временем распространения сигнала и могут работать на различные виды нагрузки. Они могут быть выполнены на одном или на нескольких транзисторах. Наиболее распространены логические элементы, выполненные по ТТЛ, ЭСЛ и КМОП технологиям. Но независимо от схемы логического элемента и её параметров все они осуществляют одну и ту же функцию.

Для того, чтобы особенности включения транзисторов не затеняли выполняемую функцию, были введены специальные обозначения для логических элементов — условно-графические обозначения. Условно-графическое обозначение инвертора приведено на рисунке 2.

Рисунок 2. Условно-графическое обозначение логического инвертора

Инверторы присутствуют практически во всех сериях цифровых микросхем. В отечественных микросхемах инверторы обозначаются буквами ЛН. Например, в микросхеме 1533ЛН1 содержится 6 инверторов. Иностранные микросхемы для обозначения типа микросхемы используется цифровое обозначение. В качестве примера микросхемы, содержащей инверторы, можно назвать 74ALS04. В названии микросхемы отражается, что она совместима с ТТЛ микросхемами (74), произведена по улучшеной малопотребляющей шоттки технологии (ALS), содержит инверторы (04).

В настоящее время чаще применяются микросхемы поверхностного монтажа (SMD микросхемы), в которых содержится по одному логическому элементу, в частности инвертору. В качестве примера можно назвать микросхему SN74LVC1G04. Микросхема произведена фирмой Texas Instruments (SN), совместима с ТТЛ микросхемами (74) произведена по низковольтовой КМОП технологии (LVC), содержит только один логический элемент (1G), им является инвертор (04).

Для исследования инвертирующего логического элемента можно использовать широкодоступные радиоэлектронные элементы. Так, в качестве генератора входных сигналов можно использовать обычные переключатели или тумблеры. Для исследования таблицы истинности можно даже применить обычный провод, который будем поочередно подключать к источнику питания и ли общему проводу. В качестве логического пробника может быть использована низковольтовая лампочка или светодиод, соединенный последовательно с токоограничивающим резистором. Принципиальная схема исследования логического элемента инвертора, реализованная с помощью этих простейших радиоэлектронных элементов, приведена на рисунке 3.

Рисунок 3. Схема исследования логического инвертора

Схема исследования цифрового логического элемента, приведенная на рисунке 3, позволяет наглядно получить данные для таблицы истинности. Подобное исследование проводится в лабораторной работе 1 Исследование цифровых устройств на основе программируемых логических интегральных схем (ПЛИС) в среде Quartus II. Более полные характеристики цифрового логического элемента инвертора, такие как время задержки входного сигнала, скорость нарастания и спадания фронтов сигнала на выходе, можно получить при помощи импульсного генератора и осциллографа (желательно двухканального осциллографа).

Логический элемент «И»

Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения «И»:

где символ ^ и обозначает функцию логического умножения. Иногда эта же функция записывается в другом виде:

То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 2. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Он обозначается «2И». Для логического элемента «2И» таблица истинности будет состоять из четырех строк .

Таблица 2. Таблица истинности логического элемента «2И»

In1 In2 Out
1
1
1 1 1

Как видно из приведённой таблицы истинности, активный сигнал на выходе этого логического элемента появляется только тогда, когда и на входе X, и на входе Y будут присутствовать единицы. То есть этот логический элемент действительно реализует операцию «И».

Проще всего понять, как работает логический элемент «2И», при помощи схемы, построенной на идеализированных ключах с электронным управлением, как это показано на рисунке 2. В приведенной принципиальной схеме ток будет протекать только тогда, когда оба ключа будут замкнуты, а, значит, единичный уровень на ее выходе появится только при двух единицах на входе.

Рисунок 4. Принципиальная схема логического элемента «2И»

Условно-графическое изображение схемы, выполняющей логическую функцию «2И», на принципиальных схемах приведено на рисунке 3, и с этого момента схемы, выполняющие функцию “И” будут приводиться именно в таком виде. Это изображение не зависит от конкретной принципиальной схемы устройства, реализующей функцию логического умножения.

Рисунок 5. Условно-графическое изображение логического элемента «2И»

Точно так же описывается и функция логического умножения трёх переменных:

Её таблица истинности будет содержать уже восемь строк (2 3 = 4). Таблица истинности трёхвходовой схемы логического умножения «3И» приведена в таблице 3, а условно-графическое изображение на рисунке 4. В схеме же логического элемента «3И», построенной по принципу схемы, приведённой на рисунке 2, придётся добавить третий ключ.

Таблица 3. Таблица истинности схемы, выполняющей логическую функцию «3И»

In1 In2 In3 Out
1
1
1 1
1
1 1
1 1
1 1 1 1

Получить подобную таблицу истинности можно при помощи схемы исследования логического элемента «3И», подобной схеме исследования логического инвертора, приведенной на рисунке 3.

Рисунок 6. Условно-графическое обозначение схемы, выполняющей логическую функцию «3И»

Логический элемент «ИЛИ»

Следующим простейшим логическим элементом является схема, реализующая операцию логического сложения «ИЛИ»:

где символ V обозначает функцию логического сложения. Иногда эта же функция записывается в другом виде:

Читайте также:  Коэффициент ударной ионизации газов таблица

То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 4. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается «2ИЛИ». Для элемента «2ИЛИ» таблица истинности будет состоять из четырех строк (2 2 = 4).

Таблица 4. Таблица истинности логического элемента «2ИЛИ»

In1 In2 Out
1 1
1 1
1 1 1

Как и в случае, рассмотренном для схемы логического умножения, воспользуемся для реализации схемы «2ИЛИ» ключами. На этот раз соединим ключи параллельно. Схема, реализующая таблицу истинности 4, приведена на рисунке 5. Как видно из приведённой схемы, уровень логической единицы появится на её выходе, как только будет замкнут любой из ключей, то есть схема реализует таблицу истинности, приведённую в таблице 4.

Рисунок 7. Принципиальная схема логического элемента «2ИЛИ»

Так как функция логического суммирования может быть реализована различными принципиальными схемами, то для обозначения этой функции на принципиальных схемах используется специальный символ «1», как это приведено на рисунке 6.

Рисунок 6. Условно-графическое изображение логического элемента, выполняющего функцию «2ИЛИ»

Дата последнего обновления файла 29.03.2018

Понравился материал? Поделись с друзьями!

  1. Микушин А.В., Сажнев А.М., Сединин В.И. Цифровые устройства и микропроцессоры. СПб, БХВ-Петербург, 2010.
  2. Угрюмов Е. П. Цифровая схемотехника. СПб, БХВ-Петербург, 2010.
  3. Шило В. Л. Популярные цифровые микросхемы. М, Радио и связь, 1987.
  4. Дж. Ф. Уэкерли Проектирование цифровых устройств. М, Постмаркет, 2002.

Со статьей «логические элементы» читают:

Синтез комбинационных цифровых схем по произвольной таблице истинности Любая логическая схема без памяти полностью описывается таблицей истинности. Для реализации таблицы истинности достаточно рассмотреть только те строки.
https://digteh.ru/digital/SintSxem.php

Дешифраторы (декодеры) Декодеры (дешифраторы) позволяют преобразовывать одни виды бинарных кодов в другие. Например.
https://digteh.ru/digital/DC.php

Шифраторы (кодеры) Достаточно часто перед разработчиками цифровой аппаратуры встаёт обратная задача. Требуется преобразовать восьмиричный или десятичный линейный код в.
https://digteh.ru/digital/Coder.php

Мультиплексоры Мультиплексорами называются устройства, которые позволяют подключать несколько входов к одному выходу.
https://digteh.ru/digital/MS.php

Демультиплексоры Демультиплексорами называются устройства. Существенным отличием от мультиплексора является.
https://digteh.ru/digital/DMS.php

Автор Микушин А. В. All rights reserved. 2001 . 2020

Предыдущие версии сайта:
http://neic.nsk.su/

Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре «Сигнал», Научно производственной фирме «Булат». В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи «Сигнал-201», авиационной системы передачи данных «Орлан-СТД», отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

Источник

Таблица истинности. Базовые логические элементы.

Так же, как и стандартные Булевы выражения, информация на входах и выходах различных логических элементов или логических схем может быть собрана в единую таблицу – таблицу истинности.

Таблица истинности дает наглядное представление о системе логических функций. В таблице истинности отображаются сигналы на выходах логических элементов при всех возможных комбинациях сигналов на их входах.

В качестве примера, рассмотрим логическую схему с двумя входами и одним выходом. Входные сигналы отметим как «А» и «В», а выход «Q». Есть четыре (2²) возможных комбинаций входных сигналов, которые можно подать на эти два входа («ON — наличие сигнала» и «OFF — отсутствие сигнала»).

Однако, когда речь идет о логических выражениях и, особенно о таблице истинности логических элементов, вместо общего понятия «наличие сигнала» и «отсутствие сигнала» используют битные значения, которые представляют собой логический уровень «1» и логический уровень «0» соответственно.

Тогда четыре возможные комбинации «А» и «В» для 2-входного логического элемента можно представить в следующем виде:

  1. «OFF» — «OFF» или (0, 0)
  2. «OFF» — «ON» или (0, 1)
  3. «ON» — «OFF» или (1, 0)
  4. «ON» — «ON» или (1, 1)

Следовательно, у логической схемы имеющей три входа будет восемь возможных комбинаций (2³) и так далее. Для обеспечения легкого понимания сути таблицы истинности, мы будем изучать ее только на простых логических элементах с числом входов не превышающим двух. Но, несмотря на это, принцип получения логических результатов для многовходных элементов схемы остается таким же.

Практически, таблица истинности состоит из одного столбца для каждой из входных переменных (например, А и В), и один последний столбец для всех возможных результатов логической операции (Q). Следовательно, каждая строка таблицы истинности содержит один из возможных вариантов входных переменных (например, A = 1, B = 0), и результат операции с этими значениям.

Таблица истинности

Элемент «И»

Для логического элемента «И» выход Q будет содержать лог.1, только если на оба входа («А» и «В») будет подан сигнал лог.1

Микросхемы, содержащие логический элемент «И»:

Источник

Adblock
detector