Меню

Таблица для вкладов егэ

Задачи про банковский вклад

Банковский вклад — это сумма денег, переданная банку на хранение с целью получить доход в виде начисленных процентов.

Раз в какой-то промежуток времени (в задачах это, как правило, месяц или год) банк начисляет на текущую сумму некоторое количество \(r\%\) процентов.

Раз в год после начисления процентов клиент, как правило, имеет право доложить на счет любую сумму денег. Также клиент имеет право снимать со счета любую сумму (естественно, не превышающую имеющуюся). Время, когда он может это сделать, указывается в задаче.

Пример: В январе \(2014\) года клиент положил в банк \(30\,000\) рублей под \(10\%\) годовых, которые банк начисляет раз в год в декабре. Сколько рублей будет на счете у клиента в январе \(2017\) года?

То, что банк начисляет на текущую сумму \(10\%\) , значит, что после начисления процентов сумма будет составлять \(110\%\) от суммы, находящейся на счете до начисления процентов.
Составим таблицу: \[\begin <|l|c|c|>\hline \text<Год>&\text <Сумма на счете до начисления>\ \%&\text <Сумма на счете после начисления>\ \%\\ &\text<(январь)>&\text<(декабрь)>\\ \hline 2014&30\,000&1,1\cdot 30\,000\\ \hline 2015&1,1\cdot 30\,000&1,1^2\cdot 30\,000\\ \hline 2016&1,1^2\cdot 30\,000&1,1^3\cdot 30\,000\\ \hline \end\]

Таким образом, в декабре \(2016\) года после начисления процентов на счете у клиента будет \(1,1^3\cdot 30\,000\) рублей. Эта же сумма будет у него на счете и в январе \(2017\) года (т.к. проценты начисляются только в декабре).

Значит, ответом будет \(39\,930\) рублей.

Клиент вложил некоторую сумму под \(10\%\) годовых, начисляемых на вклад раз в год. Известно, что в конце первого года (после начисления процентов) он снял со своего счета \(10\%\) от имеющейся на тот момент суммы, а в конце второго года (также после начисления процентов) он доложил на счет \(10\%\) от имеющейся суммы. Определите, в конце третьего года (после начисления процентов) увеличилась или уменьшилась сумма на счете после таких манипуляций по сравнению с первоначальным вкладом и на сколько процентов.

Пусть клиент сделал вклад в размере \(A\) рублей. Тогда после начисления процентов в первый год на счете у него уже будет \(1,1A\) рублей. Так как он снял \(10\%\) от этой суммы, то у него осталось \(90\%\) или \(0,9\cdot 1,1A\) рублей.
Тогда в конце второго года банк снова начислил проценты и сумма на счете стала равна \(1,1\cdot (0,9\cdot 1,1A)\) рублей. Далее он доложил \(10\%\) , следовательно, на счете у него стало \(110\%\) или \(1,1\cdot (1,1\cdot (0,9\cdot 1,1A))\) рублей.
На третьем году после начисления процентов у него стало \(1,1\cdot 1,1\cdot (1,1\cdot (0,9\cdot 1,1A))\) рублей.
Удобно следить за данными операциями, составив таблицу: \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text<Сумма до начисления >\% &\text<Сумма после начисления >\%&\text<Манипуляции>\\ \hline 1& A& 1,1A& -\,0,1\cdot (1,1A)\\ \hline 2&0,9\cdot (1,1A)& 1,1\cdot (0,9\cdot 1,1A)& +\,0,1\cdot (1,1\cdot 0,9\cdot 1,1A)\\ \hline 3& 1,1\cdot (1,1\cdot 0,9\cdot 1,1A)& 1,1\cdot (1,1\cdot 1,1\cdot 0,9\cdot 1,1A)&\\ \hline \end\]
Следовательно, на счете у него стало \[1,1^4\cdot 0,9A=1,31769A,\] что больше первоначального вклада \(A\) на \(31,769\%\) .

Владелец автосалона решил разделить свой капитал на \(3\) части и вложить их в \(3\) различных банка, причем годовые процентные ставки в этих банках относятся как \(2:3:5\) . В каком отношении он должен поделить свой капитал, чтобы через год чистая прибыль от вкладов во всех трех банках была одинакова?

Обозначим за \(2y\) процентную ставку в первом банке, тогда в остальных банках ставки будут \(3y\%\) и \(5y\%\) . Пусть вклад в первый банк составил \(A_<1>\) , во второй – \(A_<2>\) , в третий – \(A_<3>\) . Составим таблицу:
\[\begin <|l|c|c|c|>\hline \text<Банк>&\text <Размер вклада до>&\text <Размер вклада после>&\text<Чистая прибыль>\\ &\text<начисления >\%&\text<начисления >\%&\\ \hline &&&\\ 1&A_ <1>&\dfrac<100+2y><100>\cdot A_<1>&A_<1>\cdot \left(\dfrac<100+2y><100>-1\right)\\ &&&\\ \hline &&&\\ 2&A_ <2>&\dfrac<100+3y><100>\cdot A_<2>&A_<2>\cdot \left(\dfrac<100+3y><100>-1\right)\\ &&&\\ \hline &&&\\ 3&A_ <3>&\dfrac<100+5y><100>\cdot A_<3>&A_<3>\cdot \left(\dfrac<100+5y><100>-1\right)\\ &&&\\ \hline \end\]

Т.к. чистая прибыль во всех банках должна быть одинакова, то \(A_<1>\cdot \left(\dfrac<100+2y><100>-1\right)=A_<2>\cdot \left(\dfrac<100+3y><100>-1\right)=A_<3>\cdot \left(\dfrac<100+5y><100>-1\right) \Leftrightarrow \) \(2A_<1>=3A_<2>=5A_ <3>\Rightarrow A_<1>:A_<2>:A_<3>=15:10:6\) .

Алексей решил внести некоторую сумму \(A\) рублей в банк под целое число \(y\) процентов годовых. Каждый год после начисления процентов он дополнительно вносит на счет сумму, равную половине от той, которая находилась на счете у Алексея в начале текущего года. Какая наименьшая процентная ставка \(y\) должна быть у банка, чтобы к концу третьего года (после внесения третьей дополнительной суммы) сумма на счете была не менее \(8A\) рублей?

По условию итоговая сумма на счете должна быть не менее \(8A \Rightarrow\)

Преобразовав левую часть неравенства, получим:

Решив данное неравенство, получим: \(t \geqslant 1,5 \Rightarrow y \geqslant 50\)

Таким образом, наименьшее целое значение \(y=50\%\) .

В банке оформили два одинаковых вклада под один и тот же процент годовых на 3 года. По первому вкладу были проделаны следующие манипуляции: в конце первого года (после начисления процентов) со счета было снято \(20\%\) от имеющейся там суммы, а в конце второго (после начисления процентов) доложено \(30\%\) от имеющейся там суммы. По второму вкладу: в конце первого года (после начисления процентов) на счет было доложено \(20\%\) от имеющейся там суммы, а в конце второго (после начисления процентов) снято \(30\%\) от имеющейся там суммы.
Определите, на каком из двух счетов в конце третьего года после проделанных действий оказалось больше денег? Найдите отношение суммы, находящейся на первом счете, к сумме, находящейся на втором счете.

Пусть оба вклада были размером \(A\) рублей. Пусть после начисления процентов вклад увеличивался в \(t\) раз.

Составим таблицу для первого вклада: \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text<Сумма до начисления >\% &\text<Сумма после начисления >\%&\text<Манипуляции>\\ \hline 1& A& tA & -\,0,2\cdot (tA)\\ \hline 2&0,8\cdot (tA)& t\cdot (0,8\cdot tA) & +\,0,3\cdot (t\cdot 0,8\cdot tA)\\ \hline 3& 1,3\cdot (t\cdot 0,8\cdot tA)& t\cdot (1,3\cdot t\cdot 0,8\cdot tA)&\\ \hline \end\]

Следовательно, в конце третьего года на счете было \[1,3\cdot 0,8\cdot t^3A=1,04t^3A \quad <\small<\text<рублей.>>>\]

Составим таблицу для второго вклада: \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text<Сумма до начисления >\% &\text<Сумма после начисления >\%&\text<Манипуляции>\\ \hline 1& A& tA & +\,0,2\cdot (tA)\\ \hline 2&1,2\cdot (tA)& t\cdot (1,2\cdot tA) & -\,0,3\cdot (t\cdot 1,2\cdot tA)\\ \hline 3& 0,7\cdot (t\cdot 1,2\cdot tA)& t\cdot (0,7\cdot t\cdot 1,2\cdot tA)&\\ \hline \end\]

Следовательно, в конце третьего года на счете было \[1,2\cdot 0,7\cdot t^3A=0,84t^3A \quad <\small<\text<рублей.>>>\]

Заметим, что по первому вкладу на счете оказалась большая сумма. Отношение равно \[1,04:0,84=26:21.\]

Ваня сделал вклад в банке на 3 года. Раз в год банк начисляет на сумму, находящуюся на счете, некоторое количество процентов. У Вани есть возможность в один из первых двух лет (после начисления процентов) снять со счета \(20\%\) от имеющейся там суммы, а в другой год (из первых двух лет) — доложить также \(20\%\) от имеющейся там суммы. Или сделать наоборот. Определите, какое из этих действий спустя 3 года принесет Ване большую выгоду и сколько процентов составит эта выгода?

Пусть Ваня положил в банк \(A\) рублей. Пусть каждый год банк увеличивает сумму, находящуюся на счете, в \(t\) раз. Рассмотрим два случая:

1) сначала он снял \(20\%\) , затем доложил. \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text<Сумма до начисления >\% &\text<Сумма после начисления >\%&\text<Манипуляции>\\ \hline 1& A& tA & -\,0,2\cdot (tA)\\ \hline 2&0,8\cdot (tA)& t\cdot (0,8\cdot tA) & +\,0,2\cdot (t\cdot 0,8\cdot tA)\\ \hline 3& 1,2\cdot (t\cdot 0,8\cdot tA)& t\cdot (1,2\cdot t\cdot 0,8\cdot tA)&\\ \hline \end\]

2) сначала он доложил \(20\%\) , затем снял. \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text<Сумма до начисления >\% &\text<Сумма после начисления >\%&\text<Манипуляции>\\ \hline 1& A& tA & +\,0,2\cdot (tA)\\ \hline 2&1,2\cdot (tA)& t\cdot (1,2\cdot tA) & -\,0,2\cdot (t\cdot 1,2\cdot tA)\\ \hline 3& 0,8\cdot (t\cdot 1,2\cdot tA)& t\cdot (0,8\cdot t\cdot 1,2\cdot tA)&\\ \hline \end\]

Таким образом, мы видим, что в обоих случаях в конце третьего года на счете у Вани будет \[0,8\cdot 1,2\cdot t^3A \quad <\small<\text<рублей.>>>\]

Следовательно, выгода составляет \(0\%\) .

В феврале женщина оформила в банке вклад на 4 года. Каждый год в ноябре банк начисляет на вклад \(8\%\) . В декабре первого года пользования услугами данного банка женщина решила купить квартиру и сняла для этой цели со своего счета \(8\) млн. рублей. Ровно через два года она продала эту квартиру и сразу же вернула на счет в банке те же \(8\) млн. рублей. Определить, сколько рублей потеряла по истечении срока действия вклада из-за подобных действий эта женщина.

Пусть размер вклада составил \(A\) млн. рублей. Составим таблицу, описывающую действия, происходившие со вкладом: \[\begin <|l|c|c|c|>\hline \text<Номер года>&\text <Сумма в феврале>&\text<Сумма в ноябре>&\text<Манипуляции>\\ \hline 1& A & 1,08A & -\,8\\ \hline 2& 1,08A-8 & 1,08 (1,08A-8) & \\ \hline 3& 1,08 (1,08A-8) & 1,08^2 (1,08A-8) & +\,8\\ \hline 4&1,08^2 (1,08A-8)+8 & 1,08(1,08^2 (1,08A-8)+8)&\\ \hline \end\]

Таким образом, спустя четыре года на счете у женщины было \[1,08(1,08^2 (1,08A-8)+8)=1,08^4A-8\cdot 1,08(1,08-1)(1,08+1) \quad <\small<\text<млн. рублей>>>\]

Если бы она не совершала данные манипуляции, то каждый год ее вклад увеличивался бы в \(1,08\) раз и к концу четвертого года составил бы \(1,08^4A\) млн. рублей. Следовательно, из-за подобных действий ее вклад уменьшился на \[8\cdot 1,08(1,08-1)(1,08+1)=8\cdot 1,08\cdot 0,08\cdot 2,08=1,437696\quad <\small<\text<млн. рублей>>>\]

В январе 2014 года Андрей сделал вклад в размере \(6\,640\,000\) рублей под \(y\) процентов годовых. В феврале 2014 года он захотел купить квартиру стоимостью \(9\) млн. рублей, но решил для этого взять кредит под \(21\%\) годовых на 15 лет, который необходимо выплачивать дифференцированными платежами. Найдите наименьшее число \(y\) , чтобы процентов, начисляемых на его вклад каждый год, было достаточно для того, чтобы вносить платежи в счет погашения кредита.

Заметим, что так как кредит должен выплачиваться дифференцированными платежами, то из их определения следует, что первый платеж по кредиту будет наибольшим среди всех платежей.
Так как каждый платеж по такому кредиту состоит из двух частей: \(\frac1<15>\) часть от \(9\) млн. рублей плюс проценты, “набежавшие” на долг за текущий год, то первый платеж будет равен \[\dfrac1<15>\cdot 9000+0,21\cdot 9000 \ \ <\small<\text<тыс. рублей.>>>\] (так как в первый год пользования кредитом долг равен \(9\) млн. рублей или, что то же самое, \(9000\) тыс. рублей)

Рассмотрим вклад. В первый год на вклад “набегут” проценты в размере \(0,01y\cdot 6640\) тыс. рублей. Этой суммы должно хватить для того, чтобы сделать первый платеж. Следовательно, \[0,01y\cdot 6640\geqslant \dfrac1<15>\cdot 9000+0,21\cdot 9000 \qquad (*)\]

Заметим, что таким образом, если он снимет в первый год со счета не более \(0,01y\cdot 6640\) тыс. рублей, то на счете у него останется как минимум \(6640\) тыс. рублей, то есть точно не меньше, чем было в начале первого года. Следовательно, “набежавших” процентов во второй год также хватит на то, чтобы сделать второй платеж (ведь он меньше первого платежа!). Такое же рассуждение относится и к всем следующим годам.
Следовательно, нам важно, чтобы именно первых “набежавших” процентов хватило на то, чтобы сделать первый платеж.

\[y\geqslant \dfrac<83>3\cdot \dfrac<9000> <6640>\quad\Rightarrow\quad y\geqslant \dfrac<3000><80>=37\frac12\]

Следовательно, наименьшее подходящее \(y\) равно \(37,5\%\) .

Во время сдачи ЕГЭ по математике многие выпускники сталкиваются с проблемой решения задач по банковским вкладам и кредитам. Данная тематика встречается в тестовых заданиях довольно редко, поэтому ей уделяется недостаточно внимания при подготовке. Чтобы легко справляться с упражнениями, обращайтесь к нашему онлайн-порталу. Вы научитесь быстро находить правильные ответы и сможете решать примеры различной сложности.

«Школково» — залог успешной сдачи заключительного аттестационного тестирования!

На нашем сайте представлены все материалы, которые необходимы для подготовки к Единому государственному экзамену по математике. Наши преподаватели собрали и подали информацию по теме в наиболее простой и понятной форме. Благодаря такому подходу занятия проходят быстро и легко.

Чтобы подготовка к итоговому тестированию проходила максимально результативно, советуем воспользоваться предложенным нами алгоритмом действий.

Зайдите в раздел «Теоретическая справка», где размещены самые необходимые правила, формулы и простейшие примеры решения типовых экономических задач. Внимательно ознакомьтесь с материалами.

После этого переходите в раздел «Каталоги». Там собрано множество упражнений различного уровня сложности. Советуем начать с простых задач и постепенно переходить к более трудным. Так вы сможете определить свои слабые стороны и сделать упор на решении определенных упражнений.

Читайте также:  Анализаторные системы таблица тип рецепторов

Если у вас возникли проблемы с каким-либо примером на тему «Решение задач по банковским вкладам и кредитам», его можно добавить в «Избранное». Задание не потеряется, и вы сможете вернуться к его выполнению самостоятельно или вместе с преподавателем.

База упражнений на нашем портале постоянно обновляется и дополняется. Поэтому школьники каждый день получают совершенно новые задания, соответствующие уровню их текущих навыков. Такой подход значительно отличается от стандартных занятий с использованием школьных пособий. Выпускники совершенствуют свои знания, а не просто заучивают, как решать типовые примеры, предложенные в учебниках.

Начните подготовку на портале «Школково» уже сегодня, и результат не заставит себя ждать! Всего через несколько дней регулярных занятий вы заметите, что с легкостью справляетесь с теми упражнениями, которые ранее вызывали сложности.

Источник



Задание 17. Финансовая математика — профильный ЕГЭ по математике

Задание 17 Профильного ЕГЭ по математике — «экономическая» задача. Речь, как вы уже поняли, речь пойдет о деньгах. О кредитах и вкладах. О ситуациях, где нужно узнать, при каких значениях переменной будет максимальна прибыль или минимальны издержки. Кстати, само задание 17 оценивается на ЕГЭ в 3 первичных балла.

В этой статье:

Как научиться решать «экономические» задачи. С чего начать,

Две схемы решения задач на кредиты и как их распознать,

В чем основная сложность «экономической задачи»,

Задания на оптимальный выбор. В том числе — с применением производной.

Если материал покажется вам сложным — вернитесь к теме «Задачи на проценты» из первой части ЕГЭ по математике.

Надеемся, что вы уже сейчас сможете ответить на такие вопросы:

  1. Что принимается за 100%?
  2. Величина х увеличилась на p%. Как это записать?
  3. Величина y дважды уменьшилась на р%. Как это записать?

Ответы на вопросы, а также подготовительные задачи — в статье «Задача 17 Профильного ЕГЭ по математике. Кредиты и вклады. Начисление процентов». Повторите эту тему.

Запомним, что есть всего две схемы решения задач на кредиты

Первая схема: кредит погашается равными платежами. Или известна информация о платежах. Подробно здесь.

Вторая схема: равномерно уменьшается сумма долга. Или дана информация об изменении суммы долга Подробно здесь.

Посмотрите, чем эти схемы отличаются друг от друга. На какие ключевые слова в условии надо обратить внимание.

Потому что первое, что надо сделать, когда решаете «экономическую» задачу на кредиты или вклады, — определить, к какому типу она относится.

1. 31 декабря 2014 года Аристарх взял в банке 6 902 000 рублей в кредит под 12,5% годовых. Схема выплаты кредита следующая — 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга (то есть увеличивает долг на 12,5%), затем Аристарх переводит в банк X рублей. Какой должна быть сумма X, чтобы Аристарх выплатил долг четырьмя равными платежами (то есть за четыре года)?

Конечно, это задача первого типа. Есть информация о платежах. В условии сказано, что Аристарх выплатит долг четырьмя равными платежами.

тыс. рублей — сумма долга. Расчеты будем вести в тысячах рублей.

— коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов,

— сумма ежегодного платежа.

Составим схему погашения кредита. Заметим, что здесь 4 раза (то есть в течение 4 лет) повторяются одни и те же действия:

— сумма долга увеличивается в раз,

— Аристарх вносит на счет сумму в счет погашения кредита, и сумма долга уменьшается на . Вот что получается:

Что у нас в скобках? Да, это геометрическая прогрессия, и ее проще записать как

. В этой прогрессии первый член равен 1, а каждый следующий в k раз больше предыдущего, то есть знаменатель прогрессии равен k.

Применим формулу суммы геометрической прогрессии:

И выразим из этой формулы .

Что же, можно подставить численные данные. Стараемся, чтобы наши вычисления были максимально простыми. Поменьше столбиков! Например, коэффициент k лучше записать не в виде десятичной дроби 1,125 — а в виде обыкновенной дроби , Иначе у вас будет 12 знаков после запятой!

И конечно, не спешить возводить эту дробь в четвертую степень или умножать на S = 6902000 рублей.

Ответ: 2296350 рублей

Вот следующая задача.

2. Жанна взяла в банке в кредит 1,8 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 1 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?

В этой задаче сумма долга уменьшается равномерно — задача второго типа.

Пусть S — первоначальная сумма долга, S = 1800 тысяч рублей.

Нарисуем схему начисления процентов и выплат. И заметим некоторые закономерности.

Сумма долга уменьшается равномерно. Можно сказать — равными ступеньками. И каждая ступенька равна После первой выплаты сумма долга равна после второй

Тогда первая выплата Вторая выплата ,

Последняя в году выплата

Сумма всех выплат в течение первого года:

В первой «скобке» — сумма 12 членов арифметической прогрессии, в которой Обозначим эту сумму

Во второй скобке — также сумма 12 членов арифметической прогрессии, в которой Эту сумму обозначим

Общая сумма выплат за год:

Ответ: 1066500 рублей.

Еще одна задача — комбинированная. Здесь мы рисуем такую же схему выплаты кредита, как в задачах второго типа.

3. В июле 2016 года планируется взять кредит в банке на пять лет в размереSтыс. рублей. Условия его возврата таковы:

− каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

− с февраля по июнь каждого года необходимо выплатить часть долга;

− в июле 2017,2018 и 2019 долг остаётся равным S тыс. рублей;

− выплаты в 2020 и 2021 годах равны по 625 тыс. рублей;

− к июлю 2021 долг будет выплачен полностью.

Найдите общую сумму выплат за пять лет.

Введем переменные: тысяч рублей. Рисуем схему погашения кредита:

Общая сумма выплат: Кроме того, долг был полностью погашен последней выплатой .

Это значит, что и тогда

Но не только задачи на кредиты и вклады могут встретиться в задании 17 Профильного ЕГЭ по математике. Есть еще задачи на оптимальный выбор. Например, нужно найти максимальную прибыль (при соблюдении каких-либо дополнительных условий), или минимальные затраты. Сначала в такой задаче нужно понять, как одна из величин зависит от другой (или других). Другими словами, нужна та функция, наибольшее или наименьшее значение которой мы ищем. А затем — найти это наибольшее или наименьшее значение. Иногда — с помощью производной. А если повезет и функция получится линейная или квадратичная — можно просто воспользоваться свойствами этих функций.

4. Консервный завод выпускает фруктовые компоты в двух видах тары—стеклянной и жестяной. Производственные мощности завода позволяют выпускать в день 90 центнеров компотов в стеклянной таре или 80 центнеров в жестяной таре. Для выполнения условий ассортиментности, которые предъявляются торговыми сетями, продукции в каждом из видов тары должно быть выпущено не менее 20 центнеров. В таблице приведены себестоимость и отпускная цена завода за 1 центнер продукции для обоих видов тары.

Вид тары Себестоимость, 1 центнера
Отпускная цена, 1 центнера
стеклянная 1500 руб 2100 руб
жестяная 1100 руб 1750 руб

Предполагая, что вся продукция завода находит спрос (реализуется без остатка), найдите максимально возможную прибыль завода за один день (прибылью называется разница между отпускной стоимостью всей продукции и её себестоимостью).

По условию, завод не может выпускать компот только в стеклянных банках или только в жестяных — должны быть и те, и другие.

Пусть x — доля мощностей завода, занятых под поизводство компотов в стеклянных банках, а y — доля мощностей, занятых под производство компттов в жестяных банках, Тогда x+y=1. (Например, х=0,3 и у = 0,7 — то есть 30% производства — это компот в стеклянных банках, а 70% — компот в жестяных банках.

Если бы завод выпускал только компот в стеклянных банках, их бы получилось 90 центнеров в сутки. Однако выпускаются и те, и другие, и компотов в стеклянных банках производится 90x центнеров, а в жестяных банках — 80y центнеров в сутки.

Вид тары Доля в общем количестве Производится в сутки Прибыль за 1 центнер
стеклянная 2100 — 1500 = 600 руб
жестяная 1750 — 1100 = 650 руб

Общая прибыль завода за сутки равна

По условию, и , то есть и

Нужно найти наибольшее значение выражения при выполнении следующих условий:

Подставим в выражение для прибыли завода за сутки. Получим, что она равна Это линейная функция от x. Она монотонно возрастает и свое наибольшее значение принимает при Тогда и максимально возможная прибыль завода за день равна

Ответ: 53500 руб.

Больше задач по финансовой математике на нахождение наибольших и наименьших значений функций и применение производной — здесь:

Вот такая она, задача с экономическим содержанием. Мы рассказали о ней самое главное. Если готов осваивать ее самостоятельно — желаем удачи. А если не все будет сразу получаться — приходи к нам в ЕГЭ-Студию на интенсивы, курсы или Онлайн-курс.

Источник

Как решать экономические задачи егэ по математике профильный уровень

Экономические задачи в ЕГЭ

Математика

За задание №17 по математике ЕГЭ профильный уровень можно получить 3 балла. Мы рассмотрим как решать экономические задачи ЕГЭ по математике, которые в каждом варианте профильного уровня по математике идут под номером 17.

Решение №17 включает в себя обязательное построение математической модели, то есть это обычная текстовая задача, но с экономическим (финансовым) уклоном и чаще всего с большим количеством вычислений.

Можно выделить несколько блоков заданий:

1. Вклады и кредиты

2. Акции и другие ценные бумаги

3. Методы оптимальных решений

Рассмотрим каждый из вышеперечисленных блоков.

  1. Вклады и кредиты
  2. Акции и другие ценные бумаги
  3. Методы оптимальных решений
  4. Примеры решения задач

Вклады и кредиты

Вклады и кредиты – самый обширный блок. Здесь вы можете встретить различные схемы возврата кредита или увеличения суммы вклада, и ваша задача – упорядочить данные таким образом, чтобы большой массив текста превратился в удобную математическую схему.

Чтобы правильно решать такие задачи, необходимо владеть формулой сложных процентов. Начисление по этой формуле предполагает, что каждый последующий год процент начисляется не на исходную сумму, а на исходную сумму, увеличенную предыдущим начислением процентов.

Формула выглядит следующим образом:

формула подсчета процентов по вкладам

где FV – будущая сумма.

PV – текущая сумма.

p – процент, в соответствии с которым происходит начисление

n – количество лет начисления процента.

Если начисления происходят не ежегодно, а чаще, например, ежеквартально, формула модифицируется в следующий вид:

формула 2 в экономической задаче,

FV – будущая сумма

PV – текущая сумма

p – процент, в соответствии с которым происходит начисление

n – количество лет начисления процента

m – количество начислений в год (например, m=4, если начисления ежеквартальные).

Давайте отработаем эту формулу на подготовительной задаче.

Задача 1

Алексей положил 100 000 рублей в банк под 6% годовых на 3 года. Какая сумма будет у Алексея через год? Через 2 года? Через 3 года?

Решение:

Рассчитаем по формуле сложного процента сумму через год:

формула 3 к задаче

Теперь сумму через 2 года:

формула 4 к задаче

Теперь сумму через 3 года:

нахождение суммы с учетом процентов

Более того, вам придётся работать со схемами кредитов/вкладов, поэтому решим более сложную задачу, в которой нужно будет переводить текст в таблицы и уравнения /неравенства.

Задача 2

Вклад в размере 10 млн рублей планируется открыть на четыре года. В конце каждого года вклад увеличивается на 10% по сравнению с его размером в начале года, а, кроме этого, в начале третьего года и четвёртого годов вклад ежегодно пополняется на одну и ту же фиксированную сумму, равную целому числу миллионов рублей. Найдите наименьший возможный размер такой суммы, при котором через четыре года вклад станет не меньше 28 млн рублей.

Решение:

Пусть искомая сумма составит a млн рублей.

Составим таблицу, чтобы упорядочить данные и построить математическую модель.

таблица

По условию, нужно найти наименьшее целое x, для которого выполнено неравенство

14,641 + 2,31a ≥ 28

a ≥ расчет стоимости

Наименьшее целое число, при котором знак неравенства выполняется, это число 6.

Читайте также:  Таблица симптомов заболевания кошек

Значит, искомая сумма — 6 млн рублей.

Ответ: 6 млн рублей.

Акции и другие ценные бумаги

Следующий блок, который мы рассмотрим, затрагивает относительно новое понятие ценной бумаги. Что вам нужно знать о ценной бумаге, чтобы решать подобные задания, не вдаваясь в экономические особенности, это то, как она может приносить доход.

Тип 1: когда вы получаете доход от того, что ценная бумага, которую вы купили ранее, растет в цене. Например, сначала ценная бумага стоила 3 000, а через год стала стоить 4 000. Непосредственно этих 4 000 у вас нет, но вы можете продать ценную бумагу за 4 000 и получите больше, чем потратили за год до этого.

Тип 2: когда вы получаете некий процент от прибыли компании за то, что ранее приобрели ценную бумагу этой компании. Если вы являетесь владельцем акции, то доход данного типа вы получаете в форме дивидендов.

Помимо этого дохода вы также можете продать эту ценную бумагу и, если она теперь стоит больше, чем когда вы ее покупали, вы также получите прибыль. Это не все пути получения дохода от ценных бумаг, но других особенностей вам знать не нужно. При необходимости все дополнительные условия будут описаны в самой задаче.

Схема разделения дохода в задачах о ценных бумагах

Рассмотрим следующую задачу, в которой как раз фигурирует понятие ценной бумаги.

Задача 3.

Григорий приобрёл ценную бумагу компании за 9000 рублей в начале 2016 года. Компания находится на стадии активного роста, поэтому цена данной бумаги каждый год возрастает на 2000 рублей. В любой момент Григорий может продать бумагу и положить вырученные деньги на банковский счёт. Каждый год сумма на счёте будет увеличиваться на 12 %. В начале какого года Григорий должен продать ценную бумагу, чтобы через 15 лет после покупки этой бумаги сумма на банковском счёте была наибольшей?

Решение:

Продать бумагу нужно тогда, когда прирост стоимости ценной бумаги станет меньше, чем банковский процент. Пусть это случится в год n.

К этому моменту n к изначальной цене акции 9000 прибавится n раз по 2000, тогда на текущий момент её цена составит:

Чтобы получить прирост, который Григорий получит, если хранить деньги в форме акции, необходимо ежегодный прирост (в данной задаче – 2000 рублей) поделить на накопленную к данному моменту сумму.

Прирост денежной суммы в банке всегда одинаков и равен предложенному проценту, то есть 0,12.

Таблица

Либо можем составить уравнение, которое объединит все строчки нашей таблицы:

Формула для подсчета данных таблицы

По прошествии четырёх лет Григорий должен продать бумагу, то есть в начале 2020 года.

Методы оптимальных решений

Это особый блок, позволяющий максимизировать одну целевую функцию при учёте данных в условии ограничений.

Основные типы заданий в этом блоке:

1. Оптимизация работы на производстве с учётом цен на рынке товара и факторов производства;

2. Многозаводское производство (включая разные заводы/ отели/ другие рабочие пространства);

3. Транспортная задача.

Разберём несколько задач с основными методами решения.

Задача.

У фермера есть 2 поля, площадь каждого из которых составляет 10 гектаров. На каждом поле можно выращивать пшеницу и ячмень. Урожайность пшеницы на первом поле составляет 500 ц/га, а на втором поле – 300 ц/га. Урожайность ячменя, наоборот, на первом поле составляет 300 ц/га, а на втором поле – 500 ц/га. При этом известно, что между данными злаками поля можно делить в любом соотношении.

Если известно, что на рынке установилась цена на пшеницу 7000 рублей за центнер, а цена на ячмень 9000 рублей за центнер, то какой наибольший доход фермер может получить?

Решение:

Имеем 2 поля с различными характеристиками.

В целом, продавать ячмень выгоднее, чем продавать пшеницу, так как 9000 > 7000 рублей.

Более того, известно, что на втором поле урожайность ячменя выше, чем урожайность пшеницы (500 ц/га против 300 ц/га). Тогда очевидно, что второе поле полностью фермер займёт ячменём, откуда получит:

10·500· 9000= 45000000 рублей

Ситуация с первым полем не так очевидна.

Продавать ячмень, как и прежде, выгоднее, чем продавать пшеницу. Однако на первом поле урожайность ячменя ниже, чем урожайность пшеницы (300 ц/га против 500 ц/га).

Поэтому необходимо сравнить соотношения этих величин:

Тогда получается, что засеять первое поле пшеницей выгоднее, так как низкая цена компенсируется высокой урожайностью.

Доход с первого поля:

10 · 500 ·7000 = 35000000 рублей

Суммарный доход составит:

35000000 рублей + 45000000 рублей = 80000000 рублей

Ответ: 80000000 рублей

Есть и другие типы заданий, в которых необходимо будет применить не житейские знания, а навыки составления уравнений и нахождения наименьшего/ наибольшего значений функций.

Задача.

На двух заводах есть по 360 рабочих, каждый из которых готов трудиться по 5 часов в сутки для обработки чёрных или цветных металлов. На первом заводе один рабочий за час обрабатывает 0,3 кг чёрных металлов или 0,1 кг цветных металлов. На втором заводе для обработки x кг чёрных металлов в день требуется x2 человеко-часов труда, а для обработки у кг цветных металлов в день требуется у2 человеко-часов труда.

Владельцу заводов поступил заказ на обработку металлов, причём 1 кг чёрных металлов ценится заказчиком так же, как 1 кг цветных металлов. Какую наибольшую массу обработанных металлов может за сутки суммарно получить заказчик?

Решение:

Как и дано в условии, 1 кг чёрных металлов ценится заказчиком так же, как 1 кг цветных металлов, что означает, что металлы взаимозаменяемы в пропорции 1:1.

Пусть на втором заводе t рабочих обрабатывают чёрные металлы, тогда (360-t) рабочих обрабатывают цветные металлы.

Знаем, что x2 человеко-часов труда требуется обработки x кг чёрных металлов, а у2 человеко-часов труда требуется в день для обработки у кг цветных металлов.

На первом заводе один рабочий за час обрабатывает 0,3 кг чёрных металлов или 0,1 кг цветных металлов, однако чёрные и цветные металлы для заказчика равнозначны, из чего сделаем вывод, что все 360 рабочих обрабатывают чёрные металлы, то есть 108*5 = 540 кг в день.

Имея соотношение на втором заводе и производительность рабочих на первом заводе, составим функцию возможного количества обработанных металлов:

Формула для расчета

Необходимо найти наибольшее значение этой функций. Последовательность действий мы уже знаем из темы «Анализ функций». Необходимо:

1. Найти производную функции;

2. Приравнять производную к 0, получить точки, подозрительные на экстремум;

3. Определить знаки производной на полученных промежутках и проверить, какие точки являются точкой максимума, а какие – точкой минимума.

Проведём такую последовательность действий с нашей производственной функцией.

  1. формула 9
  2. Приравниваем производную к нулю.формула 11Приведём к общему знаменателю. формула 12Приравняем числитель к 0. формула 13Возведём в квадрат. формула 14Получили единственную точку экстремума.
  3. Проверим, является ли она точкой максимума. на числовой оси отмечаем знак производнойВидим, что в точке t=180 производная меняет знак с + на -, тогда, по определению, это точка максимума.Итак, на втором заводе 180 рабочих обрабатывают чёрные металлы, тогда 180 рабочих обрабатывают цветные металлы.Поставим данные значения в изначальную целевую функцию. вычисленияОтвет: 600 кг

Видим, что экономическая задача достаточно разнообразна, но и решать вы её можете абсолютно разными способами – через производные, составление таблиц, схем, выведение формул и простой перебор вариантов.

Самое главное – внимательно прочитать и понять условие.

Примеры решения задач

Задача 1. В 2019 году клиент планирует открыть вклад в банке 1 ноября сроком на 1 месяц под 11% годовых. Какая сумма денег окажется на счёте вклада 1 декабря того же года, если планируемая сумма вклада равна 100 000 рублей? Ответ округлите до двух знаков после запятой.

Решение: При однократном начислении процентов через дней на вклад под годовых в невисокосный год получим сумму Формула суммы процентов

Воспользуемся этой формулой, считаяS= 100 000, r = 11 , m = 30 (так как в ноябре 30 дней).

вычисления к задаче

Число в скобках с точностью до 7 знаков после запятой равно 1,0090411, значит, S=100 904,11Таким образом, на счёте вклада будет 100 904 рубля 11 копеек.

Задача 2. Через сколько полных лет у клиента на счету будет не менее 950 000 рублей, если он намерен открыть вклад 31 декабря и планирует каждый год класть на счет 260 000 рублей при условии, что банк раз в год (начиная со следующего года) 31 декабря будет начислять 10% на имеющуюся сумму?

Решение:

Будем последовательно вычислять сумму на счете и упорядочивать данные с помощью таблицы.

Таблица к задаче

Задача 3. По вкладу «А» банк в течение трёх лет в конце каждого года увеличивает на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» увеличивает эту сумму на 11% в течение каждого из первых двух лет, а на третий год начисляемые проценты изменяются. Найдите наименьшее целое число процентов за третий год по вкладу «Б», при котором по истечении трёх лет этот вклад всё ещё будет выгоднее вклада «А».

Решение:

Формула процентов

Пусть на каждый тип вклада была внесена сумма По вкладу «А» сумма каждый год увеличивается на

умножается на коэффициент 1,1.

Тогда по вкладу «А» после первого года сумма станет равна ;

после второго года: 1,21S;

после третьего года: 1,331S.

По вкладу «Б» после первого года сумма станет равна1,11S;

после второго года 1,2321S.

Пусть на третий год по вкладу «Б» банк увеличивает сумму на r%. Тогда после третьего года по вкладу «Б» сумма станет равна

формула, где r— натуральное число,

проценткоэффициент повышения в третий год.

По условию требуется найти наименьшее целое число процентов за третий год по вкладу «Б», при котором за все три года этот вклад всё ещё останется выгоднее вклада «А», то есть сумма через три года на вкладе «Б» должна быть больше суммы на вкладе «А». Составим неравенство:

формула 22

Так как r— натуральное число, то наименьший процент равен 9%.

Задача 4. Сергей планирует приобрести ценную бумагу за 7 тысяч рублей. Цена бумаги каждый год будет возрастать на 2 тысячи рублей. В любой момент Сергей сможет продать ценную бумагу и вырученные деньги положить на банковский счет. Каждый год сумма на счете будет увеличиваться на 10%. В течение какого года после покупки Сергей должен продать ценную бумагу, чтобы через 30 лет после покупки этой бумаги сумма на счете стала наибольшей?

Решение.

Во второй год цена ценной бумаги составит: (7+2) тысячи рублей

В третий год (7+2)+2= 7+2∙2 тысячи рублей

В четвертый год (7+2)+2)+2= 7+2∙3 тысячи рублей

подсчет процентов в n год

.

Сопоставим 10% банковский рост цены бумаги ее ежегодному росту на 2000 рублей.

10% от цены бумаги на формула

Ценную бумагу стоит продать тогда, когда 10% от цены бумаги станут больше, чем 2 тысячи рублей.

Вычисления - решение неравенства

Наименьшее натуральное n, удовлетворяющее этому неравенству, равно 8.

Задача 5.

Пенсионный фонд владеет ценными бумагами, которые стоят t 2 тыс. рублей в конце года t (t=1; 2; … ). В конце любого года пенсионный фонд может продать ценные бумаги и положить деньги на счёт в банке, при этом в конце каждого следующего года сумма на счёте будет увеличиваться на 20%. В конце какого года пенсионному фонду следует продать ценные бумаги, чтобы в конце тридцатого года сумма на его счёте была наибольшей?

Источник

Решение экономических задач с помощью таблицы в ЕГЭ
материал для подготовки к егэ (гиа) по алгебре (11 класс)

Гатауллина Гульфия Анасовна

Решение экономических задач с помощью таблицы в ЕГЭ, 17 задание

Скачать:

Вложение Размер
reshenie_ekonomicheskih_zadach_s_pomoshchyu_tablitsy_v_ege.docx 37.52 КБ
reshenie_ekonomicheskih_zadach_s_pomoshchyu_tablitsy_v_ege_prezentatsiya.pptx 248.4 КБ

Предварительный просмотр:

Муниципальное казенное общеобразовательное учреждение гимназия

г. Вятские Поляны Кировской области, ул. Гагарина, д.17, факс/телефон

(83334) 6-29-29 e-mail: vpschool3@mail.ru, сайт: гимназия-вп.рф

Решение экономических задач с помощью таблицы в ЕГЭ

Составила: Гатауллина Гульфия Анасовна

МКОУ гимназии г. Вятские Поляны

Введение

В условиях современных требований к выпускникам средней школы при поступлении в ВУЗы, профилирующие предметы которых связаны с математической наукой, ЕГЭ по математике профильного уровня расширен.

С 2015 года в него добавлено экономическая (банковская) задача. Эта задача ориентирована на реальную жизнь. В этих заданиях рассматриваются идеализированные жизненные ситуации, которые являются некоторыми текстовыми упрощениями, моделями, реально возникающих, например, при обращении в банк, покупке или продаже ценных бумаг, выпуск производственной продукции и получение прибыли.

За правильное решение задания № 17 на ЕГЭ можно получить три балла.

В своей работе я решила обратиться к рассмотрению решения таких задач, потому, что с одной стороны по ним представлено не много материала в открытых источниках, а с другой – было большое желание разобраться в их решении на собственном опыте.

Рассмотрим один из подходов к решению задач с «экономическим содержанием» с помощью таблицы на примере следующих задач.

Примеры решения задач

1) В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

-каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

  • с февраля по июнь каждого года необходимо выплатить часть долга;
  • в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?

Пусть 𝑛 − срок кредита

Долг на начало года

Очевидно, что наибольший годовой платёж будет в первом году (потому что платежи равномерно уменьшаются в течение 𝑛 лет)

Наибольший годовой платёж = 9 млн

В таблице все значения становятся известными:

Долг на начало года

Общая сумма выплат (ОСВ) – это все основные платежи и все дополнительные платежи (сумму всех дополнительных платежей найдём с помощью формулы суммы первых 𝑛 членов арифметической прогрессии)

Сумма первых n членов арифметической прогрессии

2) В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года необходимо выплатить часть долга;

– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,25 млн рублей?

Пусть 𝑛 − срок кредита

Долг на начало года

Очевидно, что наименьший годовой платёж будет в последнем году (потому что платежи равномерно уменьшаются в течение 𝑛 лет)

Наибольший годовой платёж = 1.25 млн

В таблице все значения становятся известными:

Долг на начало года

Общая сумма выплат (ОСВ) – это все основные платежи и все дополнительные платежи (сумму всех дополнительных платежей найдём с помощью формулы суммы первых 𝑛 членов арифметической прогрессии)

Сумма первых n членов арифметической прогрессии

3) В июле планируется взять кредит в банке на сумму 16 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы:

– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;

– с февраля по июнь каждого года необходимо выплатить часть долга;

– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.

На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 38 млн рублей?

Пусть 𝑛 − срок кредита

Долг на начало года

Общая сумма выплат (ОСВ) – это все основные платежи и все дополнительные платежи (сумму всех дополнительных платежей найдём с помощью формулы суммы первых 𝑛 членов арифметической прогрессии)

Сумма первых n членов арифметической прогрессии

4) 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы:

– 1-го числа каждого месяца долг возрастает на 𝑟 % по сравнению с концом предыдущего месяца;

– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

– 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

Известно, что общая сумма выплат после полного погашения кредита на

30% больше суммы, взятой в кредит. Найдите 𝑟 .

Пусть 𝑥 − сумма кредита

Тогда 1,3 𝑥 − общая сумма выплат, превышающая сумму кредита на 30%

Долг на начало месяца

Общая сумма выплат (ОСВ) – это все основные платежи и все дополнительные платежи (сумму всех дополнительных платежей найдём с помощью формулы суммы первых 𝑛 членов арифметической прогрессии)

Сумма первых n членов арифметической прогрессии

5) К 15 декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:

— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тыс. рублей меньше долга на 15-ечисло предыдущего месяца;

— к 15 –му числу 21 месяца кредит должен быть полностью погашен.

Какую сумму планируется взять в кредит, если общая сумма выплат после полного погашения составит 1604 тыс. рублей.

S тыс.руб – сумма, которую планируют взять в кредит.

Долг по кредиту на начало месяца

Сумма, на которую возрастает долг на 1-е число каждого месяца

1604 тыс. рублей

Составим и решим уравнение:

Общая сумма выплат представляет собой сумму суммы, которую планируют взять в кредит, и сумму сумм, на которые возрастает долг на 1-е число каждого месяца.

s +0,03 s +0,03 (s-30)+ 0,03(s-2∙30)+….+ 0,03(s-20∙30)=1604

s+0,03∙( 21s- (30+2∙30+…20∙30)+=1604

30;2∙30;…;20∙30-арифметическая прогрессия, а 1 =30, а 21 =20∙30

Ответ: 1100 тыс. Рублей

Задачи для самостоятельного решения

  1. Жанна взяла в банке в кредит 1,2 млн рублей на срок 24 месяца. По договору Жанна должна возвращать банку часть денег в конце каждого месяца. Каждый месяц общая сумма долга возрастает на 2 %, а затем уменьшается на сумму, уплаченную Жанной банку в конце месяца. Суммы, выплачиваемые Жанной, подбираются так, чтобы сумма долга уменьшалась равномерно, то есть на одну и ту же величину каждый месяц. Какую сумму Жанна вернёт банку в течение первого года кредитования?
  1. Александр взял кредит в банке на срок 9 месяцев. В конце каждого месяца общая сумма оставшегося долга увеличивается на 12%, а затем уменьшается на сумму, уплаченную Александром. Суммы, выплачиваемые в конце каждого месяца, подбираются так, чтобы в результате сумма долга каждый месяц уменьшалась равномерно, то есть на одну и ту же величину.

Сколько процентов от суммы кредита составила общая сумма, уплаченная Александром банку (сверх кредита)?

3) 15-го января планируется взять кредит в банке на некоторый срок (целое число месяцев). Условие его выплаты таковы:

— 1-го числа каждого месяца долго возрастёт на 3% по сравнению с концом предыдущего месяца;

— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

— 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.

На сколько месяцев планируется взять кредит, если известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит?

Заключение

Я считаю введение таких задач чрезвычайно полезным так как, работая над моделями, сформулированными в условиях, они заставляют задумываться о реальной жизни. О том, что кредиты, отношения с банками, игра на бирже, колебания курсов ценных бумаг, начисление процентов дело сложное и требует больших знаний. К этому нельзя относиться легкомысленно. С чего начинать решать экономические задачи – очень внимательно читать условия задачи и по шагам распределить действия, затем постараться математически выразить их и постараться прийти к ответу.

Список литературы

1. Ященко И. В. и др. Подготовка к ЕГЭ по математике в 2018 году. Базовый и профильный уровни. Методические указания / И. В. Ященко, С. А. Шестаков, А. С. Трепалин. – М.: МЦНМО, 2015. – 288 с.

2. Демонстрационный вариант контрольно-измерительных материалов единого государственного экзамена 2018 года по математике. Профильный уровень. Сайт http://www.ege.edu.ru/

3. Спецификация контрольно-измерительных материалов для проведения в 2018 году единого государственного экзамена по математике. Профильный уровень. Сайт http://www.ege.edu.ru/

Предварительный просмотр:

Подписи к слайдам:

Решение экономических задач с помощью таблицы в ЕГЭ Презентацию подготовила Гатауллина Гульфия Анасовна учитель математики МКОУ гимназии г. Вятские Поляны Кировской области

1) В июле планируется взять кредит в банке на сумму 28 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн рублей?

2 ) В июле планируется взять кредит в банке на сумму 9 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,25 млн рублей ?

3 ) В июле планируется взять кредит в банке на сумму 16 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно , что общая сумма выплат после его полного погашения составит 38 млн рублей?

4 ) 15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы: – 1-го числа каждого месяца долг возрастает на 𝑟% по сравнению с концом предыдущего месяца; – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно , что общая сумма выплат после полного погашения кредита на 30 % больше суммы, взятой в кредит. Найдите 𝑟.

Список литературы 1. Ященко И. В. и др. Подготовка к ЕГЭ по математике в 2018 году. Базовый и профильный уровни. Методические указания / И. В. Ященко, С. А. Шестаков, А. С. Трепалин. – М.: МЦНМО, 2015. – 288 с. 2. Демонстрационный вариант контрольно-измерительных материалов единого государственного экзамена 2018 года по математике. Профильный уровень. Сайт http :// www . ege . edu . ru / 3. Спецификация контрольно-измерительных материалов для проведения в 2018 году единого государственного экзамена по математике. Профильный уровень. Сайт http :// www . ege . edu . ru /

Спасибо за внимание!

По теме: методические разработки, презентации и конспекты

Решение логических задач при помощи таблиц

В презентации представлены разноуровневые задания. Слайды удобно использовать для решения задач на интерактивной доске.

Предлагаю вашему вниманию урок, который я провожу при изучении темы «Арифметическая и геометрическая прогрессии» в 9 классе. Материал урока позволяет показать способ решения экономических задач .

Урок по теме «Решение экономических задач с помощью электронных таблиц» «

Урок проводится в профильном информационно-технологическом 11 классе при изучении темы «Электронные таблицы»В ходе урока выполняются задачи:Развитие экономической и информационной компетентности.

Практические работы по учебной дисциплине МАТЕМАТИКА по теме «Решение текстовых задач с помощью таблицы»

Решение тестовых задач для многих учащихся является трудной практически невозможной работой, т.к. много условий, непонятно что брать за «Х, У, Z», и уж совсем непонятно как ус.

Содержит конспект урока, презентацию к уроку, карточки с заданиями, ребусы. Можно успользовать как в 6 классе по ФГОС, так и в 7 классе УМК Л.Л.Босова.

Решение логических задач с помощью таблиц и кругов Эйлера

В презентации представлен разбор решений логических задач с использованием двух методов — табличного и кругов Эйлера.

Решение логических задач с помощью таблиц

Данный материал можно использовать в 7 классе при изучении темы «Решение логических задач с помощью таблиц» . Материала позволяет расширить представления учащихся о табли.

Источник

Adblock
detector