Таблица для графика прямой
Разделы: Математика
Данная статья не содержит графических иллюстраций. Поэтому знакомиться с ее содержанием будет удобнее, имея под рукой лист бумаги и карандаш.
1. Линейная функция
При изучении линейной функции на уроках алгебры в 7-м классе учащиеся довольно успешно осваивают способ построения прямой по двум точкам. При этом составляется таблица, в которой задаются значения х и вычисляются соответствующие значения y. Однако при построении прямой часто допускаются неточности: из-за того, что выбранные точки очень близко расположены друг к другу, построенная прямая “уходит в сторону”. Построить график линейной функции можно гораздо быстрее, если заметить определенные закономерности. Рассмотрим примеры.
Пример 1. Построить график функции .
Решение Составим таблицу значений функции.
Порядковый № | 1 | 2 | 3 | 4 | 5 |
x | 1 | 2 | 3 | 4 | |
y | -3 | -1 | 1 | 3 | 5 |
Первая точка выбирается традиционно – точка пересечения прямой с осью ординат. А дальше обратим внимание, что разность значений функции , т.е. совпадает со значением углового коэффициента заданной функции. А значит, для построения точек на координатной плоскости вся информация заложена в коэффициентах заданной линейной функции. Алгоритм построения точек следующий:
- строим первую точку ;
- переносим ее на 1 единицу вправо и две единицы вверх (это вторая точка, принадлежащая прямой):
- вторую точку снова перемещаем на 1 единицу вправо и две единицы вверх и получаем третью точку искомой прямой;
- далее все повторяется любое число раз.
Пример 2. Построить график функции .
Решение Первая точка имеет координаты . Каждая следующая получается из предыдущей смещением на 1 единицу вправо и на 3 единицы вниз.
Рассмотрим теперь случай, когда угловой коэффициент линейной функции задается дробью.
Пример 3. Построить график функции .
Решение Составим таблицу значений функции. Чтобы получить точки прямой с целочисленными координатами, возьмем значения х, кратные трем. Ну. а первая точка, по-прежнему, – точка пересечения прямой с осью ординат.
x | 3 | 6 | 9 | 12 | |
y | -4 | -2 | 2 | 4 |
Построим точки на координатной плоскости. Видно, что каждая следующая точка получается из предыдущей сдвигом на 3 единицы вправо и 2 единицы вверх. Проводим прямую.
Пример 4. Построить график функции .
Решение Первая точка имеет координаты . Заметим, что угловой коэффициент прямой . Значит, каждая следующая точка прямой будет получена из предыдущей смещением на 5 единиц вправо и на 4 единицы вниз. Строим точки и проводим прямую.
Обратите внимание, что в случае дробного углового коэффициента линейной функции знаменатель дроби указывает количество единиц для перемещения точки вправо, а числитель – количество единиц, на которые переместится точка вверх (при ) или вниз (при k
1 | 2 | 3 | ||||
1 | 4 | 9 | ||||
В третьей строке таблицы записана разность двух последующих значений функции. Видно, что полученные числа образуют последовательность нечетных чисел (легко убедиться, что эта закономерность выполняется и далее, например, ). Этот факт легко запоминается. А с учетом этой закономерности построить характеристические точки параболы можно так:
- первая точка – начало координат;
- вторая точка получается из первой смещением на одну единицу вправо и на одну единицу вверх;
- третья получается смещением второй точки на один вправо и три вверх;
- четвертая точка получается переносом третьей на один вправо и пять вверх;
- затем строятся точки левой ветви параболы за счет симметрии графика относительно оси ординат.
Остается провести плавную линию через полученные точки, и парабола построена.
2.2. Перейдем теперь к квадратичной функции вида , которая изучается уже в восьмом классе. Учащиеся узнают, что коэффициент а определяет направление ветвей параболы, а также растяжение или сжатие графика вдоль оси ординат. А для построения графика все равно просчитывают координаты точек. Но без этого можно обойтись, если знать указанную выше закономерность построения точек параболы . И если для нее сдвиг точек вдоль оси OY задавался последовательностью чисел , то для функции эта последовательность чисел будет .
Пример 5. Построить график функции .
Решение Графиком функции служит парабола, ветви которой направлены вниз, а вершина находится в начале координат. Для построения других точек параболы вспомним про нечетные числа , умножим их на , получаем последовательность чисел Знак говорит о том , что смещение точек будет сделано вниз. На словах алгоритм построения звучит так: от начала координат одна единица вправо и две вниз; от новой точки одна единица вправо и шесть вниз; строим точки, симметричные полученным относительно оси ординат; проводим параболу.
Пример 6. Построить график функции .
Решение Графиком функции – парабола, ветви которой направлены вверх. Вершина параболы находится в начале координат. Для построения других точек воспользуемся последовательностью При получаем следующий порядок перемещений вдоль оси ординат . Строим точки на координатной плоскости: от точки 1 клетка вправо и полклетки вверх, от полученной точки снова одна клетка вправо и полторы клетки вверх, потом от новой точки опять одна клетка вправо и две с половиной клетки вверх и т.д. (ясно, что в указанном случае за единичный отрезок на осях координат принимается одна клеточка в тетрадном листе). Затем строим точки левой ветви параболы за счет симметрии графика относительно оси OY и рисуем параболу.
2.3. В 9-м классе учащиеся изучают квадратичную функцию . Для построения ее графика с учетом выше сказанного можно применять следующий алгоритм:
- найти координаты вершины параболы ;
- построить в системе координат полученную точку и провести оси вспомогательной системы координат (прямые и );
- по коэффициенту а определить направление ветвей параболы;
- построить во вспомогательной системе координат характеристические точки функции , следуя алгоритму пункта 2.2.
- провести плавную линию через указанные точки. График готов.
Пример 7. Построить график функции .
Решение Графиком функции – парабола.
- Вычисляем координаты вершины параболы: .
- Строим точку и проводим пунктиром вспомогательные оси координат (прямые проходят через указанную точку и параллельны осям ОХ и ОY).
- Коэффициент при х 2 в данной функции равен 1. Значит, для построения характеристических точек параболы применим ряд чисел 1,3,5,…. , т.е. строим стандартную параболу, но во вспомогательной системе координат (пункт 2.1.).
- Проводим плавную линию через полученные точки. Парабола построена.
Источник
График линейной функции, его свойства и формулы
О чем эта статья:
Каникулы со смыслом в Skysmart для детей 4-17 лет
Понятие функции
Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ — наглядно.
- Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.
Понятие линейной функции
Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.
Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.
Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.
Если известно конкретное значение х, можно вычислить соответствующее значение у.
Нам дана функция: у = 0,5х — 2. Значит:
- если х = 0, то у = -2;
- если х = 2, то у = -1;
- если х = 4, то у = 0;
- и т. д.
Для удобства результаты можно оформлять в виде таблицы:
х | 2 | 4 | |
y | -2 | -1 |
Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.
Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.
Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.
Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».
Функция | Коэффициент «k» | Коэффициент «b» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = −x + 3 | k = −1 | b = 3 |
y = 1/8x − 1 | k = 1/8 | b = −1 |
y = 0,2x | k = 0,2 | b = 0 |
Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».
Свойства линейной функции
- Область определения функции — множество всех действительных чисел.
- Множеством значений функции является множество всех действительных чисел.
- График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
- Функция не имеет ни наибольшего, ни наименьшего значений.
- Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
b ≠ 0, k = 0, значит y = b — четная;
b = 0, k ≠ 0, значит y = kx — нечетная;
b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция. - Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
- График функции пересекает оси координат:
ось абсцисс ОХ — в точке (-b/k, 0);
ось ординат OY — в точке (0; b). - x=-b/k — является нулем функции.
- Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х. - Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k). - Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
Если k > 0, то этот угол острый, если k
Построение линейной функции
В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.
Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:
В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:
- если k > 0, то график наклонен вправо;
- если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
- если b 1 /2x + 3, y = x + 3.
Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.
В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).
Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.
В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.
Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).
Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.
Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.
При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
- график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
- график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
- график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).
Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.
Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.
Если k 0, то график функции y = kx + b выглядит так:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
Если k > 0 и b > 0, то график функции y = kx + b выглядит так:
0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Точки пересечения графика функции y = kx + b с осями координат:
- С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
Координаты точки пересечения с осью OY: (0; b). - С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
Координаты точки пересечения с осью OX: (- b /k; 0)
Решение задач на линейную функцию
Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!
Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.
- В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
2 = -4(-3) + b
b = -10 - Таким образом, нам надо построить график функции y = -4x — 10
Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
Поставим эти точки в координатной плоскости и соединим прямой:
Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).
- Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство. - Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
- Вычтем из второго уравнения системы первое, и получим k = 3.
Подставим значение k в первое уравнение системы, и получим b = -2.
Источник
Алгебра. Урок 5. Графики функций
Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Графики функций”.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Декартова система координат
- Функция
Декартова система координат
Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.
Координатные оси – прямые, образующие систему координат.
Ось абсцисс (ось x ) – горизонтальная ось.
Ось ординат (ось y ) – вертикальная ось.
Функция
Функция – это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .
Прямая
Линейная функция – функция вида y = a x + b где a и b – любые числа.
Графиком линейной функции является прямая линия.
Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b :
Если a > 0 , прямая будет проходить через I и III координатные четверти.
b – точка пересечения прямой с осью y .
Если a 0 , прямая будет проходить через II и IV координатные четверти.
b – точка пересечения прямой с осью y .
Отдельно выделим график уравнения x = a .
Важно : это уравнение не является функцией так как нарушается определение функции ( функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y ). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».
Парабола
Графиком функции y = a x 2 + b x + c является парабола .
Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c :
- Коэффициент a указывает на то, куда направлены ветки параболы.
- Если a > 0 , ветки параболы направлены вверх.
- Если a 0 , ветки параболы направлены вниз.
- Коэффициент c указывает, в какой точке парабола пересекает ось y .
- Коэффициент b помогает найти x в – координату вершины параболы.
- Дискриминант позволяет определить, сколько точек пересечения у параболы с осью .
- Если D > 0 – две точки пересечения.
- Если D = 0 – одна точка пересечения.
- Если D 0 – нет точек пересечения.
Гипербола
Графиком функции y = k x является гипербола .
Характерная особенность гиперболы в том, что у неё есть асимптоты.
Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.
Ось x – горизонтальная асимптота гиперболы
Ось y – вертикальная асимптота гиперболы.
На графике асимптоты отмечены зелёной пунктирной линией.
Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.
0″ height=»346″ width=»346″ sizes=»(max-width: 346px) 100vw, 346px» data-srcset=»/wp-content/uploads/2017/01/Гипербола-1.png 346w,/wp-content/uploads/2017/01/Гипербола-1-150×150.png 150w,/wp-content/uploads/2017/01/Гипербола-1-300×300.png 300w,/wp-content/uploads/2017/01/Гипербола-1-176×176.png 176w,/wp-content/uploads/2017/01/Гипербола-1-60×60.png 60w, https://epmat.ru/wp-content/uploads/2017/01/Гипербола-1.png»>
Если k 0, ветви гиперболы проходят через II и IV четверти.
Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .
Квадратный корень
Функция y = x имеет следующий график:
Возрастающие/убывающие функции
Функция y = f ( x ) возрастает на интервале , если большему значению аргумента (большему значению x ) соответствует большее значение функции (большее значение y ) .
То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)
Примеры возрастающих функций:
Функция y = f ( x ) убывает на интервале , если большему значению аргумента (большему значению x ) соответствует меньшее значение функции (большее значение y ) .
То есть чем больше (правее) икс, тем меньше (ниже) игрек. График опускается вниз (смотрим слева направо).
Примеры убывающих функций:
Для того, чтобы найти наибольшее значение функции , находим самую высокую точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наибольшим значением функции.
Для того, чтобы найти наименьшее значение функции , находим самую нижнюю точку на графике и смотрим, какая у нее координата по оси ординат (по оси y ) . Это значение и будет являться наименьшим значением функции.
Задание №11 из ОГЭ 2020. Типовые задачи и принцип их решения.
Источник
Построение графиков линейной и квадратичной функций
Разделы: Математика
Данная статья не содержит графических иллюстраций. Поэтому знакомиться с ее содержанием будет удобнее, имея под рукой лист бумаги и карандаш.
1. Линейная функция
При изучении линейной функции на уроках алгебры в 7-м классе учащиеся довольно успешно осваивают способ построения прямой по двум точкам. При этом составляется таблица, в которой задаются значения х и вычисляются соответствующие значения y. Однако при построении прямой часто допускаются неточности: из-за того, что выбранные точки очень близко расположены друг к другу, построенная прямая “уходит в сторону”. Построить график линейной функции можно гораздо быстрее, если заметить определенные закономерности. Рассмотрим примеры.
Пример 1. Построить график функции .
Решение Составим таблицу значений функции.
Порядковый № | 1 | 2 | 3 | 4 | 5 |
x | 1 | 2 | 3 | 4 | |
y | -3 | -1 | 1 | 3 | 5 |
Первая точка выбирается традиционно – точка пересечения прямой с осью ординат. А дальше обратим внимание, что разность значений функции , т.е. совпадает со значением углового коэффициента заданной функции. А значит, для построения точек на координатной плоскости вся информация заложена в коэффициентах заданной линейной функции. Алгоритм построения точек следующий:
- строим первую точку ;
- переносим ее на 1 единицу вправо и две единицы вверх (это вторая точка, принадлежащая прямой):
- вторую точку снова перемещаем на 1 единицу вправо и две единицы вверх и получаем третью точку искомой прямой;
- далее все повторяется любое число раз.
Пример 2. Построить график функции .
Решение Первая точка имеет координаты . Каждая следующая получается из предыдущей смещением на 1 единицу вправо и на 3 единицы вниз.
Рассмотрим теперь случай, когда угловой коэффициент линейной функции задается дробью.
Пример 3. Построить график функции .
Решение Составим таблицу значений функции. Чтобы получить точки прямой с целочисленными координатами, возьмем значения х, кратные трем. Ну. а первая точка, по-прежнему, – точка пересечения прямой с осью ординат.
x | 3 | 6 | 9 | 12 | |
y | -4 | -2 | 2 | 4 |
Построим точки на координатной плоскости. Видно, что каждая следующая точка получается из предыдущей сдвигом на 3 единицы вправо и 2 единицы вверх. Проводим прямую.
Пример 4. Построить график функции .
Решение Первая точка имеет координаты . Заметим, что угловой коэффициент прямой . Значит, каждая следующая точка прямой будет получена из предыдущей смещением на 5 единиц вправо и на 4 единицы вниз. Строим точки и проводим прямую.
Обратите внимание, что в случае дробного углового коэффициента линейной функции знаменатель дроби указывает количество единиц для перемещения точки вправо, а числитель – количество единиц, на которые переместится точка вверх (при ) или вниз (при k
1 | 2 | 3 | ||||
1 | 4 | 9 | ||||
В третьей строке таблицы записана разность двух последующих значений функции. Видно, что полученные числа образуют последовательность нечетных чисел (легко убедиться, что эта закономерность выполняется и далее, например, ). Этот факт легко запоминается. А с учетом этой закономерности построить характеристические точки параболы можно так:
- первая точка – начало координат;
- вторая точка получается из первой смещением на одну единицу вправо и на одну единицу вверх;
- третья получается смещением второй точки на один вправо и три вверх;
- четвертая точка получается переносом третьей на один вправо и пять вверх;
- затем строятся точки левой ветви параболы за счет симметрии графика относительно оси ординат.
Остается провести плавную линию через полученные точки, и парабола построена.
2.2. Перейдем теперь к квадратичной функции вида , которая изучается уже в восьмом классе. Учащиеся узнают, что коэффициент а определяет направление ветвей параболы, а также растяжение или сжатие графика вдоль оси ординат. А для построения графика все равно просчитывают координаты точек. Но без этого можно обойтись, если знать указанную выше закономерность построения точек параболы . И если для нее сдвиг точек вдоль оси OY задавался последовательностью чисел , то для функции эта последовательность чисел будет .
Пример 5. Построить график функции .
Решение Графиком функции служит парабола, ветви которой направлены вниз, а вершина находится в начале координат. Для построения других точек параболы вспомним про нечетные числа , умножим их на , получаем последовательность чисел Знак говорит о том , что смещение точек будет сделано вниз. На словах алгоритм построения звучит так: от начала координат одна единица вправо и две вниз; от новой точки одна единица вправо и шесть вниз; строим точки, симметричные полученным относительно оси ординат; проводим параболу.
Пример 6. Построить график функции .
Решение Графиком функции – парабола, ветви которой направлены вверх. Вершина параболы находится в начале координат. Для построения других точек воспользуемся последовательностью При получаем следующий порядок перемещений вдоль оси ординат . Строим точки на координатной плоскости: от точки 1 клетка вправо и полклетки вверх, от полученной точки снова одна клетка вправо и полторы клетки вверх, потом от новой точки опять одна клетка вправо и две с половиной клетки вверх и т.д. (ясно, что в указанном случае за единичный отрезок на осях координат принимается одна клеточка в тетрадном листе). Затем строим точки левой ветви параболы за счет симметрии графика относительно оси OY и рисуем параболу.
2.3. В 9-м классе учащиеся изучают квадратичную функцию . Для построения ее графика с учетом выше сказанного можно применять следующий алгоритм:
- найти координаты вершины параболы ;
- построить в системе координат полученную точку и провести оси вспомогательной системы координат (прямые и );
- по коэффициенту а определить направление ветвей параболы;
- построить во вспомогательной системе координат характеристические точки функции , следуя алгоритму пункта 2.2.
- провести плавную линию через указанные точки. График готов.
Пример 7. Построить график функции .
Решение Графиком функции – парабола.
- Вычисляем координаты вершины параболы: .
- Строим точку и проводим пунктиром вспомогательные оси координат (прямые проходят через указанную точку и параллельны осям ОХ и ОY).
- Коэффициент при х 2 в данной функции равен 1. Значит, для построения характеристических точек параболы применим ряд чисел 1,3,5,…. , т.е. строим стандартную параболу, но во вспомогательной системе координат (пункт 2.1.).
- Проводим плавную линию через полученные точки. Парабола построена.
Источник