Меню

Таблица для формул пуассона

Таблица для формул пуассона

1.9. Формула Пуассона

При большом числе испытаний $n$ и малой вероятности $р$ формулой Бернулли пользоваться неудобно, например, $0.97^<999>$ вычислить трудно. В этом случае для вычисления вероятности того, что в $n$ испытаниях ($n$ – велико) событие произойдет $k$ раз, используют формулу Пуассона:

Здесь $\lambda=n \cdot p$ обозначает среднее число появлений события в $n$ испытаниях.

Эта формула дает удовлетворительное приближение для $p \le 0,1$ и $np \le 10$. Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

При больших $np$ рекомендуется применять формулы Лапласа (Муавра-Лапласа).

Примеры решений на формулу Пуассона

Пример. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. По условию дано: $n=1000$, $p=0,002$, $\lambda=np=2$, $k=3$.

Искомая вероятность после подстановки в формулу:

Пример. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути 0,004. Найти вероятность того, что в пути повреждено меньше трех изделий.

Решение. По условию дано: $n=500$, $p=0,004$, $\lambda=np=2$.

По теореме сложения вероятностей получаем вероятность того, что повреждено меньше 3 изделий, то есть 0, 1 или 2 изделия:

Пример. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найти вероятность того, что магазин получит более двух разбитых бутылок.

Решение. По условию дано: $n=1000$, $p=0,003$, $\lambda=np=3$.

Чтобы найти вероятность $P_<1000>(k\gt 2)$ того, что магазин получит более двух разбитых бутылок, используем переход к противоположному событию (разбито не более 2 бутылок, то есть 0, 1 или 2):

$$ P_<1000>(k\gt 2) = 1 — P_<1000>(k\le 2) = 1 — (P_<1000>(0)+P_<1000>(1)+P_<1000>(2)) = \\=1 — \left(\frac<3^0><0!>\cdot e^ <-3>+ \frac<3^1><1!>\cdot e^ <-3>+ \frac<3^2><2!>\cdot e^ <-3>\right) =\\ =1 — \left(1 + 3 + 9/2 \right)\cdot e^ <-3>\approx 0,568. $$

Видео о решении задач с помощью формулы Пуассона

Подробную статью о формуле с примерами, онлайн калькулятор и расчетный файл к видеоролику вы найдете тут.

Источник



Распределение и формула Пуассона

В данной статье мы рассмотрим ещё одно дискретное распределение, которое получило широкое распространение на практике. Не успел я открыть курс по теории вероятностей, как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п. И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

– проводится независимых испытаний, в каждом из которых случайное событие может появиться с вероятностью . Требуется найти вероятность того, что в данной серии испытаний событие появится ровно раз.

Наверное, вам уже снится формула Бернулли🙂

тем более, на уроке о биномиальном распределении вероятностей мы разобрали ситуацию по косточкам.

В том случае, если количество испытаний велико (сотни и тысячи), эту вероятность обычно рассчитывают приближённо – с помощью локальной теоремы Лапласа: , где .

Однако и тут есть «слабое звено» – теорема Лапласа начинает серьёзно барахлить (давать большую погрешность), если вероятность меньше, чем 0,1 (и чем меньше, тем всё хуже). Поэтому здесь используют другой метод, и именно распределение Пуассона.

Итак, если количество испытаний достаточно велико, а вероятность появления события в отдельно взятом испытании весьма мала (0,05-0,1 и меньше), то вероятность того, что в данной серии испытаний событие появится ровно раз, можно приближенно вычислить по формуле Пуассона:
, где

Напоминаю, что ноль факториал , а значит, формула имеет смысл и для .

Вместо «лямбды» также используют букву «а».

В новом микрорайоне поставлено 10000 кодовых замков на входных дверях домов. Вероятность выхода из строя одного замка в течение месяца равна 0,0002. Найти вероятность того, что за месяц откажет ровно 1 замок.

Утопичная, конечно, задача, но что делать – решаем🙂

В данном случае количество «испытаний» велико, а вероятность «успеха» в каждом из них – мала: , поэтому используем формулу Пуассона:

Вычислим:
– по существу, это среднеожидаемое количество вышедших из строя замков.

Таким образом:
– вероятность того, что за месяц из строя выйдет ровно один замок (из 10 тысяч).

Ответ:

С технической точки зрения этот результат можно получить несколькими способами, расскажу о них в историческом ракурсе:

1) С помощью специальной таблицы, которая до сих пор встречается во многих книгах по терверу. В данную таблицу сведены различные значения и соответствующие им вероятности. Табулирование обусловлено тем, что в своё время не существовало бытовых калькуляторов, на которых можно было бы подсчитать значения экспоненциальной функции. Отсюда, кстати, идёт традиция округлять вычисления до 4 знаков после запятой – как в стандартной таблице.

Читайте также:  Исследовательская работа с текстом заполните третью часть таблицы

2) С помощью прямого вычисления на микрокалькуляторе (прогресс!).

3) С помощью стандартной экселевской функции:
=ПУАССОН(m; лямбда; 0)
в данной задаче вбиваем в любую ячейку Экселя =ПУАССОН(1; 2; 0) и жмём Enter.

Следует отметить, что развитие вычислительной техники фактически отправило в историю методы Лапласа, да и рассматриваемый метод тоже – по той причине, что ответ легко вычислить более точно по формуле Бернулли:

Здесь я использовал функцию БИНОМРАСП, о которой неоднократно упоминал ранее.

Но формула Пуассона, тем не менее, даёт очень крутое приближение:
– с погрешностью только на 9 знаке после запятой!

Впрочем, это всё лирика, решать-то всё равно нужно по формуле Пуассона:

Завод отправил в торговую сеть 500 изделий. Вероятность повреждения изделия в пути равна 0,003. Найти вероятность того, что при транспортировке будет повреждено: а) ни одного изделия, б) ровно три изделия, в) более трех изделий.

Решение: используем формулу Пуассона:

В данном случае:
– среднеожидаемое количество повреждённых изделий

а)
– вероятность того, что все изделия дойдут в целости и сохранности. Ничего не украдут, одним словом 🙂

б)
– вероятность того, что в пути будут повреждены ровно 3 изделия из 500.

в)
А тут всё немножко хитрее. Сначала найдём – вероятность того, что в пути повредятся не более трёх изделий. По теореме сложения вероятностей несовместных событий:

Само собой, ручками это считать надоест, и поэтому я добавил в свой расчётный макет автоматическое построение распределения Пуассона (см. Пункт 7) – пользуйтесь на здоровье.

По теореме сложения вероятностей противоположных событий:
– вероятность того, что при доставке будет повреждено более 3 изделий.

Ответ: а) , б) , в)

Вероятность изготовления бракованных деталей при их массовом производ­стве равна . Определить вероятность того, что в партии из 800 деталей будет: а) ровно 2 бракованные, б) не более двух.

Решение и ответ в конце урока.

Встречаются и другие формулировки условия. Так, в предложенной задаче может идти речь о том, что производственный брак составляет 0,1% или «в среднем 1 деталь на каждую тысячу». Бывает и дано готовое значение «лямбда», например: «В стандартной партии из 800 деталей брак в среднем составляет 0,8 деталей. Найти вероятность того, что в очередной партии…».

В этой связи ни в коем случае не отключаем голову – даже в таких простых примерах!

А теперь о самом распределении Пуассона. Случайная величина , распределённая по этому закону, принимает бесконечное и счётное количество значений , вероятности появления которых определяются формулой:

Или, если расписать подробно:

Вспоминая разложение экспоненты в ряд, легко убедиться, что:

В теории установлено, что математическое ожидание пуассоновской случайной величины равно и дисперсия – тому же самому значению: .

Обратите внимание, что во всех вышеприведённых заданиях мы лишь ПОЛЬЗОВАЛИСЬ распределением Пуассона для приближенного расчёта вероятностей, в то время как ТОЧНЫЕ значения следовало находить по формуле Бернулли, т.е., там имело место биномиальное распределение.

И следующие две задачи принципиально отличаются от предыдущих:

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение: случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах:

вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ:

Аналогичная задача на понимание:

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце урока.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим, если он удовлетворяет условиям стационарности, отсутствия последствий и ординарности. Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в дверь?» – нет уж, увольте, рубить удобнее по порядку.

Читайте также:  Транспортный комплекс россии таблица

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в некоторую единицу времени (минуту, час, день или в любую другую). Тогда вероятность того, что за данный промежуток времени, в систему поступит ровно заявок, равна:

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение: используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

По формуле Пуассона:
– вероятность того, что в течение 5 минут не будет ни одного звонка.

По теореме сложения вероятностей противоположных событий:
– вероятность того, что в течение 5 минут будет хотя бы один вызов.

Ответ: а) , б)

Заметьте, что, несмотря на конечное количество возможных звонков (а оно в принципе конечно), здесь имеет место именно распределение Пуассона, а не какое-то другое.

Для самостоятельного решения:

Среднее число автомобилей, проходящих таможенный досмотр в течение часа, равно 3. Найти вероятность того, что: а) за 2 часа пройдут досмотр от 7 до 10 автомобилей; б) за полчаса успеет пройти досмотр только 1 автомобиль.

Решение и ответ в конце урока.

Наверное, многие знают, что теория массового обслуживания – это обширный и очень интересный раздел прикладной математики, и сейчас мы познакомились с простейшей его задачей.

Дополнительные примеры на распределение и формулу Пуассона можно найти в тематической pdf-книге, и я предлагаю вам ознакомиться с ещё одной популярной вещью – Гипергеометрическим распределением вероятностей.

Приятного и полезного чтения!

Решения и ответы:

Пример 3. Решение: используем формулу Пуассона:
, в данном случае:

а) – вероятность того, что в данной партии окажется ровно 2 бракованные детали.
б) По теореме сложения вероятностей несовместных событий:

– вероятность того, что в данной партии окажется не более 2 бракованных изделий.

Пример 5. Решение: случайная величина принимает значения с вероятностями . По условию, .
Найдём вероятность того, что случайная величина примет нулевое значение:

По теореме сложения вероятностей противоположных событий:
– вероятность того, что случайная величина примет положительное значение

Пример 7. Решение: предполагая поток простым, используем формулу Пуассона:

а) Вычислим – среднее количество автомобилей, проходящих таможенный досмотр, в течение 2 часов.
По теореме сложения вероятностей несовместных событий:

– вероятность того, что за 2 часа досмотр пройдут от 7 до 10 автомобилей

б) Вычислим – среднее количество автомобилей, проходящих досмотр, за 1/2 часа.
По формуле Пуассона:
– вероятность того, что за полчаса таможенный досмотр пройдёт только один автомобиль.

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

Источник

Распределение Пуассона

Если у Вашего провайдера происходят обрывы в среднем на 20 минут в неделю, то какова вероятность, что сегодня интернета не будет целый час? 22.3%! А вот на два часа мы останемся без интернета с вероятностью только 4.3%. Итак, распределение Пуассона как раз для этого, зная среднее значение, мы можем получить вероятность, что событие произойдёт за интересующий нас период.

Вероятность (в общем)

Очень важная вероятность, используется буквально ежедневно на производстве и в сфере обслуживания и других науках. Суть очень проста: если мы знаем вероятность события и если такие события происходят независимо друг от друга, то мы можем узнать:

  • a. Вероятность, что произойдёт N событий
  • b. Вероятность, что произойдёт меньше или больше чем N событий

Вероятность (конкретный случай)

Пример

На заводе производят 1000 метров кабеля в день, стоимостью 500 рублей за 1 м. В среднем обнаруживается один брак на 300 метров произведённого и тогда метр провода обрезается. Какова вероятность, что за три дня завод потеряет больше 7000 рублей?

Читайте также:  Таблицу с указанием наименования оборудования назначения марки мощности

0.0033.
Потери завода на 7000 рублей — это 14 бракованных метров.
Параметр лямбда для трёх дней равен: λ 3000*0.0033 = 10.
Куммулятивное значение распределения Пуассона для λ = 10 равно F(14) = 0.9165, откуда вероятность получить больше 14 бракованных метров за три дня равна 1-0.9165 = 0.08835 = 8.3%.

Распределение Пуассона — определение

Распределение Пуассона — вероятностное распределение дискретного типа, моделирует случайную величину, представляющую собой число событий, произошедших за фиксированное время, при условии, что данные события происходят с некоторой фиксированной средней интенсивностью и независимо друг от друга. Другими словами, если событие происходит с некоторой периодичностью, то мы можем определить вероятность, что такое событие произойдёт n раз за интересующий нас период.

Параметр лямбда — λ

Распределение Пуассона зависит только от одного параметра — λ, данный параметр зависит от вероятности успешного события и общего количества событий.
Успешное событие: распределение Пуассона применяется только тогда, когда есть разделение на результат «да» и «нет», например, лампочка перегорела: да — успешное событие; шина прокололась: да — успешное событие и так далее.

Пример

В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет меньше 4 ящиков с яблоком голден?

Вероятность ящика с яблоком голден — 0.1% (1 ящик на 1000 = 1/1000, если в процентах — 1/1000 * 100 = 0.1%)
Общее количество событий — 5000 ящиков
Из вышесказанного следует:
λ = 5000 * 0.001 = 5
Откуда вероятность равна 26.5% (калькулятор ниже).

Функция вероятности (формула Пуассона)

Вероятность, что успешное событие произойдёт k раз:

Пример

В тысяче ящиков с антоновками в одном попадается голден, какова вероятность, что в 5000 ящиках будет 2 ящика с яблоком голден?

Из предыдущего примера мы знаем, что λ=5, теперь мы ищем вероятность, что k будет равно 2, для этого используем формулу функции вероятности:

Закон распределения

График распределения Пуассона

Обратите внимание, что при увеличении λ, график распределения становится похож на график нормального распределения.

Источник

Учебник по теории вероятностей

1.9. Формула Пуассона

При большом числе испытаний $n$ и малой вероятности $р$ формулой Бернулли пользоваться неудобно, например, $0.97^<999>$ вычислить трудно. В этом случае для вычисления вероятности того, что в $n$ испытаниях ($n$ – велико) событие произойдет $k$ раз, используют формулу Пуассона:

Здесь $\lambda=n \cdot p$ обозначает среднее число появлений события в $n$ испытаниях.

Эта формула дает удовлетворительное приближение для $p \le 0,1$ и $np \le 10$. Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).

При больших $np$ рекомендуется применять формулы Лапласа (Муавра-Лапласа).

Примеры решений на формулу Пуассона

Пример. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

Решение. По условию дано: $n=1000$, $p=0,002$, $\lambda=np=2$, $k=3$.

Искомая вероятность после подстановки в формулу:

Пример. Завод отправил на базу 500 изделий. Вероятность повреждения изделия в пути 0,004. Найти вероятность того, что в пути повреждено меньше трех изделий.

Решение. По условию дано: $n=500$, $p=0,004$, $\lambda=np=2$.

По теореме сложения вероятностей получаем вероятность того, что повреждено меньше 3 изделий, то есть 0, 1 или 2 изделия:

Пример. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка окажется разбитой, равна 0,003. Найти вероятность того, что магазин получит более двух разбитых бутылок.

Решение. По условию дано: $n=1000$, $p=0,003$, $\lambda=np=3$.

Чтобы найти вероятность $P_<1000>(k\gt 2)$ того, что магазин получит более двух разбитых бутылок, используем переход к противоположному событию (разбито не более 2 бутылок, то есть 0, 1 или 2):

$$ P_<1000>(k\gt 2) = 1 — P_<1000>(k\le 2) = 1 — (P_<1000>(0)+P_<1000>(1)+P_<1000>(2)) = \\=1 — \left(\frac<3^0><0!>\cdot e^ <-3>+ \frac<3^1><1!>\cdot e^ <-3>+ \frac<3^2><2!>\cdot e^ <-3>\right) =\\ =1 — \left(1 + 3 + 9/2 \right)\cdot e^ <-3>\approx 0,568. $$

Видео о решении задач с помощью формулы Пуассона

Подробную статью о формуле с примерами, онлайн калькулятор и расчетный файл к видеоролику вы найдете тут.

Источник

Adblock
detector