Меню

Таблица белые карлики нейтронные звезды черные дыры



Нейтронные звезды и черные дыры

Нейтронные звезды и черные дыры являются финальными стадиями эволюции массивных звезд. Эти компактные объекты не только обладают интереснейшими астрофизическими проявлениями, но и представляют огромный интерес для фундаментальной физики.

Нейтронные звезды и черные дыры являются финальными стадиями эволюции массивных звезд. Эти компактные объекты не только обладают интереснейшими астрофизическими проявлениями, но и представляют огромный интерес для фундаментальной физики. Недаром за исследования нейтронных звезд было вручено уже две с половиной нобелевских премии (за открытие радиопульсаров, за обнаружение двойного пульсара и проверку ОТО, а также сюда можно отнести как минимум половину премии за развитие рентгеновской астрономии). В курсе рассматриваются различные источники, связанные с нейтронными звездами и черными дырами, эволюция нейтронных звезд, а также перспективы исследований в этой области.

Сходство черной дыры и нейтронной звезды

Черная дыра, это и есть нейтронная звезда, точнее, черная дыра представляет собой одну из разновидностей нейтронных звезд.

Черня дыра, как и нейтронная звезда состоит из нейтронов. Причем, это не нейтронный газ, в котором нейтроны находятся в свободном состоянии, а очень плотная субстанция с плотностью атомного ядра.

Черные дыры и нейтронные звезды образуются в результате гравитационного коллапса, когда давление газа в звезде не может уравновесить её гравитационное сжатие. При этом звезда сжимается до очень маленького размера и очень большой плотности, так что электроны вдавливаются в протоны и образуются нейтроны.

Заметим, что среднее время жизни свободного нейтрона около 15 минут (период полураспада около 10 минут). Поэтому нейтроны в нейтронных звездах и в черных дырах могут быть только в связанном состоянии, как в атомных ядрах. Поэтому нейтронная звезда и черная дыра, это как бы атомное ядро макроскопических размеров, в котором нет протонов.

Отсутствие протонов, это одно отличие черной дыры и нейтронной звезды от атомного ядра. Второе отличие связано с тем, что в обычных атомных ядрах нейтроны и протоны «склеены» друг с другом с помощью ядерных сил (так называемое, «сильное» взаимодействие). А в нейтронных звездах нейтроны «склеены» с помощью гравитации.

Дело в том, что ядерным силам нужны еще и протоны для «склеивания» нейтронов друг с другом. Не существует таких ядер, которые состоят только из одних нейтронов. Обязательно должен быть хотя бы один протон. А для гравитации никакие протоны не нужны, чтобы «склеить» нейтроны друг с другом.

Еще одно отличие гравитации от ядерных сил заключается в том, что гравитация, это дальнодействующее взаимодействие, а ядерные силы, это короткодействующее взаимодействие. Поэтому атомные ядра не могут быть макроскопических размеров. Начиная с урана, все элементы периодической таблицы Менделеева имеют неустойчивые ядра, которые распадаются из-за того, что положительно заряженные протоны отталкиваются друг от друга и разрывают крупные ядра.

У нейтронных звезд и черных дыр такой проблемы нет, так как, во-первых, гравитационные силы дальнодействующие, а, во-вторых, в нейтронных звездах и черных дырах нет положительно заряженных протонов.

Нейтронная звезда и черная дыра под действием сил гравитации имеют форму шара, а точнее эллипсоида вращения, так как все нейтронные звезды (и черные дыры) вращаются вокруг своей оси. Причем достаточно быстро, с периодами вращения от нескольких секунд и меньше.

Дело в том, что нейтронные звезды и черные дыры образуются из обычных звезд путем их сильного сжатия под действием гравитации. Поэтому, по закону сохранения момента вращения, они должны очень быстро вращаться.

Является ли поверхность черных дыр и нейтронных звезд твердой? Не в смысле твердого тела, как агрегатного состояния вещества, а в смысле четкой поверхности шара, без нейтронной атмосферы. Видимо, да, черные дыры и нейтронные звезды имеют твердую поверхность. Нейтронная атмосфера и нейтронная жидкость, это нейтроны в свободном состоянии, значит, они должны распадаться.

Но это не значит, что, если мы, например, уроним на поверхность черной дыры или нейтронной звезды какое-нибудь «изделие» из нейтронов с плотностью атомного ядра, то оно останется лежать на поверхности звезды. Такое гипотетическое «изделие» тут же «всосется» во внутрь нейтронной звезды и черной дыры.

Отличие черных дыр от нейтронных звезд

Сила тяжести у черной дыры такая, что вторая космическая скорость на её поверхности превышает скорость света. Поэтому свет с поверхности черной дыры не может навсегда уйти в открытый космос. Гравитационные силы заворачивают луч света обратно.

Если на поверхности черной дыры находится источник света, то фотоны этого света сначала летят вверх, а потом поворачивают и падают обратно на поверхность черной дыры. Или эти фотоны начинают вращаться вокруг черной дыры по эллиптической орбите. Последнее имеет место на такой черной дыре, на поверхности которой первая космическая скорость меньше скорости света. В этом случае фотон может вырваться с поверхности черной дыры, но он превращается в постоянный спутник черной дыры.

А на поверхности всех остальных нейтронных звезд, которые не являются черными дырами, вторая космическая скорость меньше скорости света. Поэтому, если на поверхности такой нейтронной дыры находится источник света, то фотоны от этого источника света покидают поверхность такой нейтронной звезды по гиперболическим орбитам.

Понятно, что все эти рассуждения относятся не только к видимому свету, но и к любому электромагнитному излучению. То есть покинуть черную дыру не может не только видимый свет, но и радиоволны, инфракрасные лучи, ультрафиолетовое, рентгеновское и гамма-излучение. Максимум, что смогут фотоны этих излучений и волн, это начать вращаться вокруг черной дыры, если для данной черной дыры скорость света больше первой космической скорости на поверхности звезды.

Поэтому такие нейтронные звезды и называются так «черная дыра». От черной дыры ничего не вылетает, а всё что угодно может туда залететь. (Испарение черных дыр за счет квантового туннелирования здесь рассматривать не будем.)

То есть понятно, что никакой дырки в пространстве там на самом деле нет. Точно также, как нет никакой дырки в пространстве на месте расположения обычной нейтронной звезды или на месте обычной звезды.

Дырки в пространстве там есть только в книгах писателей-фантастов, в научно-популярных изданиях и телепередачах. Изданиям и телепередачам нужно финансово отбить затраты на тиражи и рейтинги. Поэтому им приходится эмоционально поражать своих читателей и телезрителей такими фактами, которые нельзя проверить при сегодняшнем уровне развития науки и техники, но которые могут появится в каких-нибудь математических моделях.

(Непрофессиональная публика обычно не подозревает, что математические модели в физике всегда вторичны, что физика наука экспериментальная и что математические модели физических объектов имеют свойство в будущем меняться по мере появления новых экспериментальных данных.)

Если бы мы могли стоять на поверхности черной дыры, то посмотрев вверх мы бы увидели вместо звездного неба полупрозрачное зеркало. То есть мы видели бы там и окружающий космос (так как черная дыра принимает всё излучение отправленное к ней) и тот свет, который возвращается к нам обратно не сумев преодолеть гравитация. Этот возврат света обратно имеет эффект зеркала.

Точно такое же полупрозрачное «зеркало» на поверхности черной дыры имеет место и для других видов электромагнитного излучения (радиоволны, рентген, ультрафиолет и т.д.)

Белые карлики, нейтронные звёзды и чёрные дыры. Что их связывает между собой?

Откуда берутся белые карлики? Наверняка многие знают, что они не входят в область главной последовательности звезд на диаграмме Герцшпрунга-Рассела:

Когда звезда относительно небольшой массы истощает своё ядерное топливо, она «раздувается», сбрасывая внешние оболочки. Образуется планетарная туманность, в центре которой остаётся белый карлик. Его радиус сравним с радиусом Земли, а масса немного больше солнечной.

Поэтому плотность таких звёзд довольно высока. Почему бы им не сжиматься до бесконечно большой плотности? Принцип запрета Паули не позволяет электронам быть в одном и том же квантовом состоянии (электрон является фермионом), поэтому при увеличении плотности звезды электроны начинают двигаться с большей скоростью. Это создает дополнительное давление изнутри, предотвращающее полное сжатие.

Светимость белых карликов, как видно из диаграммы, низкая, поэтому их трудно регистрировать в оптическом диапазоне. Однако самый известный белый карлик – Сириус В – был пойман в телескоп Альваном Кларком еще в 1862 году. Вместе с Сириусом А (или просто — Сириусом) Сириус В составляет двойную систему белого карлика и звезды главной последовательности. Период обращения Сириуса В составляет около 50 лет.

Иллюстрация наиболее вероятного вида системы

Если Сириус А до сих пор горит, значит Сириус В раньше был намного массивнее его: в тяжёлых звёздах термоядерный синтез протекает быстрее, поэтому и «умирают» они раньше. В определенный момент Сириус В стал красным гигантом, затем сбросил внешние оболочки. Как быть с тем, что белые карлики, их большинство, — это часть так называемой невидимой астрономии?

Регистрировать их в рентгеновском диапазоне. Зарождение рентгеновской астрономии – относительно недавнее событие (середина ХХ века). Для сравнения снимок системы Сириуса: А выглядит тусклее В, хотя в видимом диапазоне светимость А больше на несколько порядков.

Белый карлик может быть компонентом тесно связанной гравитационной системы, в которой вещество звезды-соседа перетекает на него.

Нейтронная звезда – тоже один из завершающих этапов существования звезды, но только масса «умирающей» звезды должна быть больше. Естественно предположить, что нейтронные звёзды в основном состоят из нейтронов. Как это возможно? Атомы состоят из нейтронов и протонов в ядре и электронов. При огромной плотности электроны сливаются с протонами, тем самым делая из них нейтроны. Кстати, этот процесс высвобождает нейтрино.

Примерное строение нейтронной звезды:

Твёрдая оболочка состоит из некоторых химических элементов.

Некоторые нейтронные звёзды вращаются с высокими скоростями – несколько сотен оборотов в секунду. Также они обладают сильными магнитными полями.

Нейтронные звёзды подразделяются на:

  • Эжекторы, они же радиопульсары (выброс заряженных частиц, излучающих в радиодиапазоне);
  • Аккреторы, они же рентгеновские пульсары (вещество достигает поверхности такой звезды, нагревается до очень высоких температур и начинает излучать в рентгеновском диапазоне);
  • Георотаторы (материя не попадает на звезду из-за её магнитного поля);

Пропеллеры (плохо изученный вид, скорее всего, ничем не примечательный – обычная звезда из нейтронов).
Остановимся на аккреторах. Их свойства, а именно низкая скорость вращения и подходящее магнитное поле, позволяют им находиться в двойных системах.

Системы с нейтронными звёздами – мощные источники рентгеновского излучения. Материя остывающей звезды перетекает на аккретор. По достижении материей его поверхности высвобождается много гравитационной потенциальной энергии. Окрестный газ начинает нагреваться до нескольких миллионов кельвинов и излучать в рентгеновском диапазоне.

Наконец, чёрные дыры. В общепринятом понимании, это область континуума с таким гравитационным притяжением, что её не могут покинуть даже фотоны. Вторая космическая скорость черных дыр превышает скорость света. Один из вариантов их возникновения – последняя стадия эволюции звёзд, массы которых намного превышают солнечную. Чёрные дыры звёздной массы являются одним из компонентов системы, имеющей название «микроквазар».

До коллапса более массивной звезды это была обычная двойная система звёзд. Теперь же вещество горящей звезды перетекает на чёрную дыру. Возникают джеты из частиц, которые сопровождаются излучением в радио- и рентгеновском диапазонах. Их появление обусловлено взаимодействием магнитного поля с диском материи около черной дыры (аккреационным диском).

Читайте также:  Парламентская республика германия таблица

Кроме того, чёрные дыры – предмет спора учёных по многим причинам:

  • «Битва при чёрной дыре» — противостояние Леонарда Сасскинда и Стивена Хокинга. Они имели разные представления о том, что происходит с объектом (информацией), попавшей в чёрную дыру.
  • Что находится внутри черной дыры? То, о чем мы можем лишь предполагать, — сингулярность – бесконечно малый размер и бесконечно большая плотность.

Однако тема чёрных дыр требует отдельного обсуждения.
Итак, все эти объекты объединены тем, что являются:

  1. Завершающим этапом эволюции звёзд (разных масс);
  2. Компонентами двойных систем;
  3. Мощными источниками рентгеновского излучения.

Белые карлики, нейтронные звёзды и чёрные дыры представляют немалый интерес для астрофизиков. В настоящее время происходит их активное изучение.

Источник

Нейтронные звезды и черные дыры.

Этот пост — конспект к пятому занятию по программе краткого курса по астрофизике для средней школы. Он содержит описание вспышек сверхновых, процессов образования нейтронных звезд (пульсаров) и черных дыр звездных масс как одиночных, так и в звездных парах. И несколько слов о коричневых карликах.

Сначала повторю картинку, показывающую классификацию типов звезд и их эволюции в зависимости от их масс:

1. Вспышки новых и сверхновых.
Выгорание гелия в недрах звезд завершается образованием красных гигантов и их вспышками как новых с образованием белых карликов или образованием красных сверхгигантов и их вспышками как сверхновых с образованием нейтронных звезд или черных дыр, а также туманностей из сброшенных этими звездами своих оболочек. Зачастую массы сбрасываемых оболочек превышают массы «мумий» этих звезд — нейтронных звезд и черных дыр. Для понимания масштабов этого явления приведу видео вспышки сверхновой 2015F в удаленной от нас на 50 млн. св. лет галактике NGC 2442:

Другой пример — сверхновая 1054 года в нашей Галактике, в результате вспышки которой образовались Крабовидная туманность и нейтронная звезда на расстоянии от нас в 6,5 тыс. св. лет. При этом масса образовавшейся нейтронной звезды

2 солнечных масс, а масса сброшенной оболочки

5 солнечных масс. Современники оценивали яркость этой сверхновой как примерно в 4-5 раз большую, чем у Венеры. Если бы такая сверхновая вспыхнула в тысячу раз ближе (6,5 св. лет), то она бы сверкала на нашем небе в 4000 раз ярче Луны, но в сотню раз слабее Солнца.

2. Нейтронные звезды.
Звезды больших масс (классов О, В, А ) после выгорания водорода в гелий и в процессе выгорания гелия преимущественно в углерод, кислород и азот входят в достаточно короткую стадию красного сверхгиганта и по завершении гелиево-углеродного цикла тоже сбрасывают оболочку и вспыхивают как «Сверхновые» . Их недра тоже сжимаются под действием гравитации. Но давление вырожденного электронного газа уже не может, как у белых карликов, остановить это гравитационное самосжатие. Поэтому температура в недрах этих звезд повышается и в них начинают идти термоядерные реакции, в результате которых образуются следующие элементы таблицы Менделеева. Вплоть до железа .

Почему именно до железа? Потому, что образование ядер с большим атомным номером идет не с выделением энергии, а с поглощением ее. А взять ее от других ядер не так то просто. Конечно, элементы с большим атомным номером в недрах этих звезд образуются. Но в гораздо меньшем количестве, чем железо.

А вот дальше эволюция расщепляется. Не слишком массивные звезды (классов А и частично В ) превращаются в нейтронные звезды . В которых электроны буквально впечатываются в протоны и большая часть тела звезды превращается в огромное нейтронное ядро. Состоящее из соприкасающихся и даже вжатых друг в друга обычных нейтронов. Плотность вещества в котором порядка нескольких миллиардов тонн в кубическом сантиметре. А типичный диаметр нейтронной звезды — порядка 10-15 километров (некоторые источники называют предельную цифру в 20 км). Нейтронная звезда — второй устойчивый тип «мумии» умершей звезды. Их массы, как правило, лежат в интервале от примерно 1,3 до 2,1 масс Солнца (по данным наблюдений).

Одиночные нейтронные звезды в оптике увидеть практически невозможно из-за их чрезвычайно низкой светимости. Но часть из них обнаруживают себя как пульсары . Что это такое? Практически все звезды обращаются вокруг своей оси и обладают достаточно сильным магнитным полем. Например, наше Солнце делает оборот вокруг своей оси примерно за месяц.

Теперь представьте себе, что его диаметр уменьшится сто тысяч раз. Ясно, что благодаря закону сохранения момента импульса вращаться оно будет гораздо быстрее. И магнитное поле такой звезды будет вблизи ее поверхности на много порядков сильнее солнечного. Большинство нейтронных звезд имеют период оборота вокруг своей оси в десятые — сотые доли секунды. Из наблюдений известно, что самый быстро вращающийся пульсар делает чуть более 700 оборотов вокруг своей оси в секунду, а самый медленно вращающийся делает один оборот за более чем 23 секунды.

А теперь представьте себе, что у такой звезды магнитная ось, как и у Земли, не совпадает с осью вращения. Жесткое излучение от такой звезды будет концентрироваться в узких конусах вдоль магнитной оси. И если этот конус будет с периодом вращения звезды «задевать» Землю, то эту звезду мы будем видеть как пульсирующий источник излучения. Наподобие вращаемого рукой нашего друга фонарика.

Такой пульсар (нейтронная звезда) образовался после вспышки сверхновой 1054 года, случившейся как раз во время визита кардинала Гумберта в Константинополь. По результатам которого произошел окончательный разрыв между католической и православной церквями. Сам этот пульсар совершает 30 оборотов в секунду. А сброшенная им оболочка массой

5 масс Солнца выглядит как Крабовидная туманность :

3. Черные дыры (звездных масс).
Наконец, достаточно массивные звезды (классов О и частично В ) заканчивают свой жизненный путь третьим типом «мумии» — черной дырой . Такой объект возникает, когда масса остатка звезды настолько велика, что давление соприкасающихся нейтронов (давление вырожденного нейтронного газа) в недрах этого остатка не может противостоять его гравитационному самосжатию. Наблюдения показывают, что граница по массе между нейтронными звездами и черными дырами лежит в окрестности

2,1 массы Солнца.

Напрямую одиночную черную дыру наблюдать невозможно. Ибо с ее поверхности (если она есть) никакая частица вырваться не может. Даже частица света — фотон. Этот факт отражен в таком понятии, как «гравитационный радиус» или «радиус горизонта событий» , за пределы которого изнутри черной дыры никакая информация выйти не может. Гравитационный радиус пропорционален массе объекта и для объекта с массой Солнца равен 2,95 километра. Тем самым, минимальный радиус горизонта событий для черной дыры звездной массы (для объекта с массой 2,1 массы Солнца) равен примерно 6 км, а диаметр — 12 км. Отсюда следует, что размеры наименьших черных дыр звездных масс практически совпадают с размерами нейтронных звезд.

4. Нейтронные звезды и черные дыры в двойных звездных системах.
Одиночные нейтронные звезды и черные дыры звездных масс практически не наблюдаемы. Но в случаях, если он и являются одной из двух или более звезд в тесных звездных системах такие наблюдения становятся возможными. Поскольку своим тяготением могут «отсасывать» внешние оболочки остающихся пока нормальными звездами своих соседок.

При таком «отсасывании» вокруг нейтронной звезды или черной дыры образуется аккреционный диск , вещество которого частично «сползает» к нейтронной звезде или черной дыре и частично отбрасывается от нее в двух струях-джетах . Это процесс удается зафиксировать. Пример — двойная звездная системв SS433, одна компонента которой либо нейтронная звезда, либо черная дыра. А вторая — пока обычная звезда:

5. Коричневые карлики.
Звезды с массами заметно меньшей солнечной и вплоть до

0,08 массы Солнца являются красными карликами класса М. Они будут работать на водородно-гелиевом цикле в течение времени большего, чем возраст Вселенной. В объектах с массами меньше этого предела по ряду причин стационарный долго работающий термояд не возможен. Такие звезды называют коричневыми карликами. Температура их поверхности настолько низка, что в оптике они почти не видны. Но светят в ИК-диапазоне. По совокупности этих причин их часто называют недозвездами .

Диапазон масс коричневых карликов — от 0,012 до 0,08 солнечных масс. Объекты с массой меньшей 0,012 массы Солнца (

12 масс Юпитера) могут быть только планетами. Газовыми гигантами. Излучающими за счет медленного гравитационного самосжатия заметно больше энергии, чем они получают от родительских звезд. Так, Юпитер по сумме всех диапазонов излучает примерно вдвое больше энергии, чем он получает от Солнца.

Источник

От белого калика до черной дыры

Белый карлик

Белый карлик

Для звезд с массой ниже некоторой критической гравитационное сжатие останавливается на стадии так называемого «белого карлика».

Плотность белого карлика больше 10 7 г/см 3 , температура поверхности

10 4 K. При столь высокой температуре атомы должны быть полностью ионизованы и внутри звезды ядра должны быть погружены в море электронов, образующих вырожденный электронный газ. Давление этого газа препятствует дальнейшему гравитационному коллапсу звезды.

Давление вырожденного электронного газа имеет квантовую природу. Оно возникает как следствие принципа Паули, которому подчиняются электроны.

Принцип Паули устанавливает предельный минимальный объем пространства, который может занимать каждый электрон. Внешнее давление не в состоянии этот объем уменьшить. В белом карлике все электроны достигли минимального объема и гравитационное сжатие уравновешено внутренним давлением электронного газа.

Ограничение на массу белого карлика примерно 1.5Ms. Эта предельная масса и называется она пределом Чандрасекара (Ms – масса Солнца, равная

Обычно полагают, что максимальная масса белого карлика 1.4Ms. Таким образом, давление вырождения электронов не может удержать массы большие, чем 1.4Ms. Если 0.5Ms 6 г/см 3 , радиус – 5х10 3 км.

Светимость белых карликов составляет 10 -2 -10 -4 от светимости Солнца. Их излучение обеспечивается запасенной в них тепловой энергией.

Нейтронная звезда

Строение нейтронной звезды

Расчеты показывают, что при взрыве сверхновой с M

25Ms остается плотное нейтронное ядро (нейтронная звезда) с массой

В звездах с остаточной массой M > 1.4Ms, не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой.

Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы «вдавливаются» друг в друга и в результате реакции

p + e — > n + ve

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны.

Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 — 10 15 г/см 3 . Характерный размер нейтронной звезды 10-15 км.

В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро.

Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это так же давление вырождения, как ранее в случае белого карлика, но – давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2Ms.

Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время

100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K – за миллион лет.

Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.

В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнитного излучения – пульсары. Периоды повторения импульсов большинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с.

Согласно современным представлениям, пульсары – это вращающиеся нейтронные звезды, имеющие массу 1-3Ms и диаметр 10-20 км.

Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения.

Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B

B – вектор магнитной индукции, основная силовая характеристика магнитного поля. Измеряется в гауссах (Гс) в системе СГС (сантиметр-грамм-секунда) и в теслах (Тл) в Международной системе единиц (СИ). 1 Тл = 10 4 Гс.

Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс.

Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан ниже на рисунке

Модель пульсара

Модель пульсара

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды.

Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара.

Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.

В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера.

Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд.

Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.

Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнаружен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.

Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах.

Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду.

В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому «тихому» коллапсу.

Черная дыра

Черная дыра

Имеется предел для массы звезды, которая может удерживаться в равновесии плотно упакованными нейтронами. Этот предел невозможно вычислить точно, так как поведение вещества при плотностях, существенно превышающих плотность ядерной материи, недостаточно изучено.

Оценки массы звезды, которая уже не может стабилизироваться за счет вырожденных нейтронов, дают значение

Таким образом, если при взрыве сверхновой сохраняется остаток массы M > 3Ms, то он не может существовать в виде устойчивой нейтронной звезды.

Ядерные силы отталкивания на малых расстояниях не в состоянии противостоять дальнейшему гравитационному сжатию звезды. Возникает необычный объект – черная дыра.

Основное свойство черной дыры состоит в том, что никакие сигналы, испускаемые ею, не могут выйти за её пределы и достигнуть внешнего наблюдателя.

Звезда массы M, коллапсируя в черную дыру, достигает сферы радиуса rg (сферы Шварцшильда):

rg = 2GM/c 2 ,

(формально к этому соотношению можно прийти, полагая в известной формуле для второй космической скорости vk2 = (2GM/R) 1/2 предельное значение этой скорости, равное скорости света).

При достижении объектом размера сферы Шварцшильда, его гравитационное поле становится столь сильным, что покинуть этот объект не может даже электромагнитное излучение. Шварцшильдовский радиус Солнца равен 3 км, Земли – 1 см.

Черная дыра Шварцшильда относится к невращающимся объектам и является остатком массивной невращающейся звезды. Вращающаяся массивная звезда коллапсирует во вращающуюся черную дыру (черную дыру Керра).

Черную дыру можно обнаружить только по косвенным признакам, в частности, если она входит в состав двойной звездной системы с видимой звездой. В этом случае черная дыра будет затягивать газ звезды. Этот газ будет нагреваться, становясь источником интенсивного рентгеновского излучения, которое может быть зарегистрировано.

В настоящее время нет прямых экспериментальных подтверждений существования черных дыр. Есть несколько космических объектов, поведение которых можно объяснить присутствием черных дыр.

Так имеется объект Лебедь XI, представляющий собой двойную систему с периодом вращения 5,6 суток. В состав системы входят голубой гигант с массой 22Ms и невидимый источник пульсирующего рентгеновского излучения с массой 8Ms, который возможно является черной дырой (объект такой большой массы не может быть нейтронной звездой).

Наряду с черными дырами, образовавшимися при коллапсе звезд, во Вселенной могут быть черные дыры, возникшие задолго до появления первых звезд вследствие неоднородности Большого Взрыва.

Появившиеся при этом сгустки вещества могли сжиматься до состояния черных дыр, тогда как остальная часть вещества расширялась. Черные дыры, образовавшиеся на самом раннем этапе Вселенной, называют реликтовыми. Предполагают, что размер некоторых из них может быть значительно меньше размера протона.

В 1974 г. Хокинг показал, что черные дыры должны испускать частицы. Источником этих частиц является процесс образования виртуальных пар частица-античастица в вакууме. В обычных полях эти пары аннигилируют столь быстро, что их не удается наблюдать. Однако в очень сильных полях виртуальные частица и античастица могут разделиться и стать реальными.

На границе черной дыры действуют мощные приливные силы. Под действием этих сил некоторые из частиц (античастиц), входивших в состав виртуальных пар, могут вылететь за пределы черной дыры. Так как многие из них аннигилируют, черная дыра должна становиться источником излучения.

Энергия, излучаемая в пространство черной дырой, поступает из её недр. Поэтому в процессе такого испускания частиц, масса и размеры черной дыры должны уменьшаться. Таков механизм «испарения» черной дыры.

Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы (в четырехмерном пространстве-времени). Например, время жизни черной дыры с массой M порядка солнечной превосходит возраст Вселенной, тогда как микродыра с M = 1 тераэлектронвольт (10 12 эВ, примерно 2×10 -30 кг) живет около 10 -27 секунд (Наука и жизнь, ЧЕРНЫЕ ДЫРЫ).

Для больших черных дыр темп «испарения» очень медленный и практически им можно пренебречь. Черная дыра массой в 10 солнечных масс испарится за 10 69 лет. Время испарения сверхмассивных (миллиарды масс Солнца) черных дыр, которые могут быть в центре больших галактик, может составлять 10 96 лет.

Приведено с сокращениями
Источник

Процессы превращения звезд в белые карлики, нейтронные звезды или черные дыры, как правило, сопровождаются выбросами колоссальной энергии. Подробнее о подобного рода энергетических выбросах, и других космических взрывах рассказывается в следующем видеосюжете.

Видео: Жесточайшие и крупнейшие взрывы в космосе. Взрывы Галактик, звезд, планет.

Источник

Гид по Вселенной: кто есть кто

В нашей Вселенной много удивительного, и порой она кажется интереснее самой изощренной выдумки фантастов. И сейчас мы хотим поговорить об объектах далекого космоса (как реальных, так и предполагаемых), о которых слышали все, но представляет себе далеко не каждый

Существует множество разных звезд: одни более горячие, другие более холодные, одни большие, другие (условно) маленькие. Звезда красный гигант имеет невысокую температуру поверхности и огромный радиус. Из-за этого она обладает высокой светимостью. Радиус красного гиганта может достигать 800 солнечных, а яркость способна превосходить солнечную в 10 тыс. раз.

Альдебаран, Арктур, Гакрукс — красные гиганты, входящие в список ярчайших светил ночного неба. При этом красные гиганты не самые массивные. Самые большие звезды — красные сверхгиганты: их радиус может превышать солнечный в 1500 раз.

Красный гигант — это конечный этап эволюции звезды. Звезда становится красным гигантом, когда в ее центре весь водород превращается в гелий, а термоядерное горение водорода продолжается на периферии гелиевого ядра. Таким образом, все красные гиганты имеют похожее строение: горячее плотное ядро и очень разреженную и протяженную оболочку. Это ведет к росту светимости, расширению внешних слоев и снижению температуры на поверхности. А также к интенсивному звездному ветру — истечению вещества из светила в межзвездное пространство.

Дальнейшая судьба красного гиганта зависит от массы. Если масса низкая, то звезда трансформируется в белого карлика, если высокая — превратится в нейтронную звезду или черную дыру.

Звезда-карлик — это полная противоположность звезде-гиганту. Перед нами проэволюционировавшее светило, масса которого сравнима с массой Солнца. При этом радиус белых карликов примерно в 100 раз меньше радиуса нашего светила. «Рождаются» они, когда красные гиганты «сбрасывают» свою оболочку, которая в виде планетарной туманности рассеивается в межзвездном пространстве. Оставшееся холодное и почти не излучающее гелиевое ядро и называют белым карликом.

Белые карлики занимают 3–10% звездного населения нашей Галактики, но из-за малой светимости выявить их очень тяжело.

« Пожилой» белый карлик непосредственно белым уже не является. Само название произошло от цвета первых открытых звезд, например Сириуса В (его размеры, кстати, можно вполне сравнить с размерами нашей Земли). По сути, белый карлик вообще не является звездой, поскольку в его недрах уже не идут термоядерные реакции. Проще говоря, белый карлик — это не звезда, а ее «труп».

По мере дальнейшей эволюции белый карлик охлаждается еще сильнее, и его цвет меняется с белого на красный. Конечная стадия эволюции такого объекта — остывший черный карлик. Другой вариант — накопление на поверхности белого карлика вещества, «перетекающего» с другой звезды, сжатие и последующий взрыв новой или сверхновой.

Об этом типе звезд знают далеко не все. И это странно, ведь наше родное Солнце — это типичный желтый карлик. Желтые карлики — небольшие звезды, масса которых составляет 0,8–1,2 солнечной. Это светила так называемой главной последовательности. На диаграмме Герцшпрунга—Рассела это область, которая содержит звезды, использующие в качестве источника энергии термоядерную реакцию синтеза гелия из водорода.

Желтые карлики имеют температуру поверхности 5000–6000 K, а среднее время их жизни составляет 10 млрд лет. Такие звезды превращаются в красных гигантов после того, как их запас водорода сжигается. Подобная участь ожидает и наше Солнце: по прогнозам ученых, примерно через 5–7 млрд лет оно поглотит нашу планету, став красным гигантом, а затем превратится в белого карлика. Но задолго до всего этого жизнь на нашей планете будет сожжена.

Коричневый (или бурый) карлик — весьма необычный объект темно-красного или даже инфракрасного цвета, который сложно как-либо классифицировать. Он занимает промежуточное положение между звездой и газовой планетой. Бурые карлики имеют массу равную 1–8% солнечной. Они чересчур массивны для планет, и гравитационное сжатие дает возможность для термоядерных реакций с участием «легкогорючих» элементов. Но для «зажигания» водорода массы недостаточно, и светит коричневый карлик, в сравнении с обычной звездой, относительно недолго.

Температура поверхности коричневого карлика может составлять 300–3000 К. Всю свою жизнь он непрерывно остывает: чем крупнее такой объект, тем медленнее происходит этот процесс. Проще говоря, коричневый карлик из-за термоядерного синтеза разогревается на первом этапе своей жизни, а затем остывает, становясь похожим на обычную планету.

Коричневые карлики могут образовываться как в протопланетном диске какой-либо звезды, так и независимо от других космических объектов. Вокруг них тоже могут появляться планеты и, по некоторым представлениям, даже обитаемые. Но поскольку коричневые карлики излучают мало тепла и очень короткое время, то зона обитаемости располагается достаточно близко к ним и очень быстро исчезает. Если на Земле для появления многоклеточной жизни потребовалось 3,5 млрд лет, и срок ее дальнейшего существования при удачном стечении обстоятельств довольно велик, то, например, многоклеточная жизнь на подобной планете около бурого карлика массой 0,04 солнечной просуществует не более 0,5 млрд лет. Потом по мере остывания карлика зона обитаемости приблизится к нему, и всё живое на планете погибнет.

Источник

Звездная зола. Чем закончится диаграмма Герцшпрунга-Рассела

Именно эта диаграмма, связывающая спектральный класс звезды с возрастом и массой светила, обладает примерно такой же замечательной периодичностью, как и таблица Менделеева. В ней есть эволюция и предсказуемость. Прослеживается и основная закономерность, характерная для Главной последовательности: вместе с массой звезды убывает ее температура и объем. При этом диаграмма Герцшпрунга-Рассела не демонстрирует еще одного важного свойства звезд: чем ниже температура, тем дольше будет гореть (тлеть) звезда. В результате длительного вырождения звезд, относящихся к известным ныне спектральным классам, также могут возникать странные объекты, которые можно назвать «гипотетическими» звездами. Они пока не образовались, так как Вселенная еще слишком молода. Но в теории такие звезды уже описаны, и именно о наиболее интересных из них я собираюсь рассказать ниже.

Голубые карлики, потомки красных карликов

Красные карлики (звезды спектрального класса M) – самые многочисленные во Вселенной. Так, почти все звезды, находящиеся в непосредственной близости от Солнца – красные карлики (из 50 самых ближних к нам звезд Солнце является 4-й по размеру). Интерес к красным карликам значительно повысился именно в последние годы, отчасти потому, что именно в системе очень тусклого и холодного красного карлика TRAPPIST-1 находится примерно семь компактно расположенных планет, как минимум три из которых должны располагаться в зоне обитаемости этой звезды.

Красные карлики завершают Главную Последовательность. Их эволюцию в настоящее время можно только моделировать, но расчеты Питера Боденгеймера из Калифорнийского университета в Беркли показывают, что срок жизни красных карликов может составлять несколько триллионов лет. При этом на протяжении всей жизни красный карлик светит ровно и стабильно, поскольку во всем объеме такой звезды происходит конвекция – перемешивание вещества.

Конвекция в красном карлике может продолжаться на протяжении почти 6 триллионов лет, поэтому звезда успевает «выработать» почти весь свой водород. Боденгеймер предполагает, что самые мелкие красные карлики в конце жизни не превратятся в красные гиганты, а, оставаясь физически компактными, вновь начнут разогреваться, став голубыми карликами.

Температура такой звезды превысит солнечную, а светимость все равно останется очень низкой. Для превращения в красный гигант масса красного карлика должна составлять не менее 0,25 M (массы Солнца). Более мелкие звезды ждет превращение в голубые карлики. При этом самые мелкие из известных красных карликов имеют массу около 0,08 M и могут гореть до 12 триллионов лет.

По-видимому, примерно через 800 миллиардов лет во Вселенной не останется звезд крупнее 0,3 M, и большинство из них окажется голубыми карликами. При этом жизнь таких звезд будет дополнительно продлеваться за счет нарастания их металличности. Металл сдерживает потерю звездной энергии, играя роль своеобразной заслонки, тем самым еще немного продлевая жизнь звезды. Вероятно, к окончанию первого триллиона лет все сохранившиеся к тому времени галактики будут иметь голубоватый оттенок, так как окажутся наполнены голубыми карликами.

Черные карлики, потомки белых карликов

В нижней части диаграммы Герцшпрунга-Рассела расположена последовательность белых карликов. Такие звезды образуются на месте красного гиганта, постепенно теряющего газовую оболочку. Ядерных реакций в них не происходит, а состоят белые карлики из постепенно остывающей раскаленной плазмы. Предполагается, что в таком состоянии белый карлик просуществует около 10 триллионов лет, после чего его поверхность перестанет излучать видимый свет. В таком случае потухшую звезду станет невозможно обнаружить в телескоп, но она все равно останется целостным объектом, который будет выдавать его гравитационное воздействие.

Самым старым белым карликам, известным в настоящее время – около 12 миллиардов лет. Таким образом, до появления первых черных карликов Вселенная должна состариться еще в тысячу раз. Тем не менее, периодичность диаграммы Герцшпрунга-Рассела позволяет уверенно предположить, что черные карлики когда-нибудь возникнут.

Блицар, потомок нейтронной звезды

Звезды такого типа – гипотетические объекты, существование которых могло бы объяснить быстрые радиовсплески (FRB), первый из которых был обнаружен в 2011 году. Про блицары на Хабре уже писали, вкратце напомню суть этого явления.

В физике известен предел Оппенгеймера-Волкова, максимальная масса, при которой нейтронная звезда еще не превращается в черную дыру. При этом данный предел рассчитывается без учета вращения, присущего многим нейтронным звездам и унаследованного от родительской звезды. Центробежная сила, возникающая при таком вращении, не дает звезде «упасть» в черную дыру, поэтому нейтронная звезда может некоторое время существовать выше предела Оппенгеймера-Волкова. В этот период звезда генерирует сильное магнитное поле, из-за которого вокруг нее исчезает аккреционный диск. В результате при падении нейтронной звезды за горизонт событий от нее «отстреливается» не вещество, а только мощное магнитное поле, что и может быть зафиксировано как быстрый радиовсплеск.

Блицары также можно считать гипотетическими объектами, поскольку непосредственно они не зафиксированы. Такие небесные тела также называются «суронами», где SURON – аббревиатура, означающая «SUpramassive Rotating Neuron star» (подмассивная вращающаяся нейтронная звезда). Физика суронов подробно изложена в этой работе; также отмечается (раздел 3.3.2), что в состоянии сурона (блицара) может удерживаться примерно 3% всех нейтронных звезд — большинству из них центробежной силы все-таки не хватает, чтобы балансировать на грани горизонта событий.

Объект Торна-Житков, потомок красного гиганта и нейтронной звезды

Кип Торн совместно с Анной Житков в 1977 году описали гипотетический объект, который мог бы возникать в случае поглощения нейтронной звезды красным гигантом. В этом случае звезда могла бы наблюдаться как пекулярная и содержать повышенные дозы лития, молибдена и рубидия. Существование звезд-гигантов с нейтронным ядром еще в 1938 году предположил Лев Ландау, почему такой объект иногда называют в честь Торна-Житков-Ландау. Наиболее вероятно, что такие звезды могут возникать при слиянии двойных звездных систем, в которые входит красный гигант и нейтронная звезда. Подобный объект должен получаться нестабильным и все равно коллапсировать в черную дыру, либо в двойную звездную систему, где вокруг общего центра масс будут обращаться нейтронная звезда и пульсар.

На практике объекты Торна-Житков пока не обнаружены. Вероятно, такая звезда должна напоминать красный сверхгигант с пекулярными линиями в спектре.

Замороженная звезда

Это еще один гипотетический объект, который может возникнуть через триллионы лет. Возможно, мы наблюдаем эпоху массивных, ярких и горячих звезд именно потому, что наша Вселенная еще слишком молода, и в ней полно гелия и водорода для образования газовых звезд. Тем не менее, так будет не всегда. Как при образовании белых карликов, так и при взрывах сверхновых, «пеплом» от ядерных реакций являются металлы, а не газы. Постепенно содержание металлов во Вселенной возрастает, и через триллионы лет новые поколения звезд будут образовываться не только и не столько из водорода, сколько из металлов. Такие объекты будут гораздо меньше нашего Солнца (около 0,04 M) и гораздо тусклее звезд, известных сегодня – внешне они могут быть сопоставимы с Юпитером. Тем не менее, поскольку они будут состоять из металлов легче железа, плотность их будет огромной, а тяготение на поверхности – около 100g. Именно поэтому в их недрах сможет протекать ядерный синтез, разогревающий такую звезду примерно до 0 градусов Цельсия. Замороженная звезда может быть окружена своеобразной атмосферой, в которой будут плавать куски льда и, повторюсь, может испускать некоторое количество света.

В классической статье 1979 года Фримен Дайсон предполагал, что в далеком будущем все мелкие звезды, в особенности, белые карлики, станут превращаться в объекты звездной массы, состоящие из чистого железа. Предполагается, что в результате различных цепочек деления и слияния легких ядер, через 10 1500 лет практически все сохранившиеся светящиеся звезды должны превратиться в глыбы холодного и остывающего железа, а такие железные звезды могут далее превращаться в последнее поколение нейтронных звезд.

Заключение

Все описанные превращения, являющиеся маленькими шагами к тепловой смерти Вселенной, являются экстраполяцией на основе диаграммы Герцшпрунга-Рассела и не учитывают еще одного гипотетического процесса. Это распад протона, спонтанное превращение протонов в более легкие субатомные частицы. Такой процесс не противоречит известной физике частиц, но также до сих пор не зафиксирован. Именно для того, чтобы засечь распад хотя бы одного протона, в Японии появился проект Камиоканде: шахты близ города Камиока были превращены в огромные резервуары с водой, оборудованные детекторами. Ни один протон во всей этой воде за минувшие сорок лет так и не распался, а Камиоканде в итоге был превращен в один из самых крупных и успешных детекторов нейтрино – но это уже совсем другая история.

Возможно, именно распадом протонов закончится существование железных звезд, которые при этом просто медленно развоплотятся. Или же на последних этапах существования Вселенная породит какие-то новые состояния вещества. Надеюсь, в этой статье мне удалось не обойти вниманием никаких интересных объектов, существование которых проистекает из диаграммы Герцшпрунга-Рассела, но пока не доказано.

Источник

Adblock
detector