Меню

Рибосомы прокариот и эукариот таблица

Рибосомы прокариот и эукариот

Клетки бактерий, сине-зеленых водорослей и актиномицетов содержат рибосомы с коэффициентом седиментации 70S. Этот коэффициент является мерой относительной плавучей плотности частиц при их центрифугировании в градиенте плотности хлористого цезия или сахарозы. Единица плавучей плотности S (сведберг) названа так в честь изобретателя ультрацентрифуги шведского ученого Т. Сведберга. Коэффициент седиментации зависит как от массы, так и от формы частицы. Молекулярная масса прокариотических рибосом составляет 2,5 мД, форма округлая со средним диаметром 25 нм. Общее количество рибосом в бактериальной клетке достигает 30 % ее сухого веса. Относительное количество белка в них в два раза меньше, чем РНК.

Рибосомы прокариотического типа с коэффициентом седиментации 70S содержатся также в хлоропластах высших растений. Однако рибосомы митохондрий, хотя и похожи на бактериальные, обладают более высокой видовой специфичностью. В частности, митохондриальные рибосомы дрожжей несколько крупнее типичных прокариотических рибосом (75S), тогда как митохондриальные рибосомы млекопитающих, наоборот, значительно меньше бактериальных (55S).

Клетки животных, растений, грибов и простейших содержат рибосомы с коэффициентом седиментации 80S. Их молекулярная масса составляет 4 мД, а средний диаметр — 30 нм. Относительное количество белка в них приблизительно равно количеству РНК. Эукариотический тип рибосом не имеет видовых различий.

На маломувеличении электронного микроскопа (до 20 000х) рибосомы выглядят как электронно-плотные округлые частицы диаметром 25-30 нм. На большом увеличении (выше 100 000х) видно, что они разделены бороздкой на две неравные части, представляющие собой малую и большую субъединицы с соотношением масс 1:2.

В физиологических условиях рибосомы обратимо диссоциируют на субъединицы. При этом прокариотические рибосомы диссоциируют по схеме:

тогда как эукариотические рибосомы диссоциируют по схеме:

Дефицит коэффициента седиментации связан с тем, что плавучая плотность рибосом зависит не только от массы субъединиц, но и от их формы.

Малая субъединица прокариотической рибосомы 30S имеет продолговатую форму, ее длина составляет 23 нм, а ширина – 12 нм. Она разделена на доли, которые называются “головка”, “тело” и “боковой выступ”. Наиболее выражена поперечная борозда, которая разделяет головку и тело. Малая субъединица эукариотической рибосомы 40S похожа на малую прокариотическую субъединицу 30S, но имеет две дополнительные детали – выступ головки со стороны, противоположной боковому выступу тела, а также раздвоенность дистального конца тела.

Большая субъединицапрокариотической рибосомы 50S диаметром 25 нм внешне идентична большой субъединице эукариотической рибосомы 60S. В большой субъединице имеются три выступа: средний выступ или “головка”, боковая доля или “ручка”, палочковидный отросток или “носик”. В целом форма большой субъединицы напоминает чайник для заварки.

Объединение субъединиц в полную рибосому происходит строго закономерным образом. При этом головки и боковые выступы малой и большой субъединиц ориентируются в одну сторону и накладываются друг на друга. Уплощенные поверхности субъединиц также взаимно дополняют друг друга в пространстве.

Химический состав рибосом

Рибосома состоит из РНК и белков, причем основные структурно-функциональные свойства этого органоида определяются рибосомальной РНК.

Прокариотические рибосомы содержат три, а эукариотические — четыре молекулы рибосомальной РНК.

Малая частица Большая частица
Прокариотическая рибосома 16S 23S+5S
Эукариотическая рибосома 18S 26S+5S+5,8S

РНК малой субъединицы с коэффициентами седиментации 16S и 18S имеет от 1500 до 1800 нуклеотидных остатков. Она обладает значительной внутренней комплементарностью, за счет чего формируется около трех десятков коротких двуспиральных участков – “шпилек”, которые детерминируют форму малой субчастицы.

Длинная молекула РНК большой субъединицы с коэффициентом седиментации 18S или 26S содержит от 3000 до 4800 нуклеотидных остатков. За счет внутренней комплементарности в ней формируется более 100 двойных спиралей, которые определяют форму субъединицы.

Кроме длинной РНК, большая субъединица прокариотических и эукариотических рибосом содержит также короткую 5S РНК, состоящую из 120 нуклеотидных остатков, которая за счет внутренней комплементарности формирует Т-образную структуру с 5 спиральными участками.

Большая субъединица эукариотических рибосом содержит дополнительно 5,8S РНК. Она состоит из 160 нуклеотидных остатков и комплементарно связана с 26S РНК. Следует отметить, что 5,8S РНК большой субъединицы эукариотических рибосом гомологична 5’-концу бактериальной 23S РНК.

Таким образом, основная функция рибосомальных РНК состоит в формировании молекулярного скелета малой и большой субъединиц рибосомы.

Рибосомы содержат 50-70 различных белков, причем большинство из них представлено лишь одной молекулой. Молекулярная масса рибосомальных белков находится в пределах 10-30 кД, хотя отдельные полипептиды достигают массы 70 кД. Среди рибосомальных белков преобладают основные полипептиды, но встречаются также нейтральные и кислые белки. Малая субъединица прокариотической рибосомы содержит 20 белков, а большая – 30 белков. У эукариотических рибосом белков значительно больше: малая субъединица содержит 30 белков, а большая — 40.

Рибосомальные белки осуществляют разнообразные функции, связанные с ролью рибосомы как организатора биосинтеза белка:

· формируют участки малой и большой субъединиц;

· образуют центры связывания молекул;

· катализируют химические реакции;

· участвуют в регуляции биосинтеза белка;

Многие рибосомальные белки выполняют одновременно несколько функций.

Наследственная информация закодирована в первичной структуре ДНК, которая в эукариотических клетках сосредоточена в клеточном ядре. Участки ДНК, кодирующие первичную структуру полипептида – структурные гены, являются матрицами для синтеза информационной РНК (иРНК). Процесс образования функциональных копий генов в виде иРНК называется транскрипцией.

Отредактированные в ходе сплайсинга иРНК поступают затем в цитоплазму, где связываются с рибосомами. Используя информацию, закодированную в иРНК, рибосомы синтезируют полипептид в ходе процесса, называемого трансляцией. Синтез полипептида из аминокислот осуществляется в соответствии с генетическим кодом, который представляет собой правила соответствия аминокислот триплетам нуклеотидов в иРНК ( кодонам).

Кроме иРНК и рибосом для осуществления трансляции необходим еще ряд других молекул. Рибосомы совместно с молекулами, принимающими участие в трансляции, образуют белоксинтезирующую систему, которая может функционировать вне клетки. Составы минимальной и полной бесклеточной систем трансляции на прокариотических рибосомах представлены в следующей таблице.

Источник



Сравнение прокариотических и эукариотических клеток, их признаки (Таблица)

На данный момент различают прокариотические и эукариотические организмы (клетки). К первым принадлежат сине-зеленые водоросли, актиномицеты, бактерии, спирохеты, микоплазмы, риккетсии и хламидии. Ко вторым принадлежат большинство водорослей, грибы и лишайники, растения и животные. В отличие от прокариотической, эукариотическая клетка имеет ядро, ограниченное оболочкой из двух мембран, и большое количество мембранных органелл.

Таблица сравнение прокариотических и эукариотических клеток, характерные признаки

Прокариотические клетки (Прокариоты)

Эукариотические клетки (Эукариоты)

В основном одноклеточные организмы

В основном многоклеточные организмы с выраженной дифференцировкой клеток и тканей

Аэробный или анаэробный

Отсутствуют или весьма малочисленные

Синтез РНК и белка

Разделен: синтез и процессинг РНК — в ядре, синтез белка -в цитоплазме

Одиночные оголенные структуры, состоящие только из ДНК кольцевой формы

Несколько структур, состоящих из ДНК и белка

Имеются — 80 S (в цитоплазме), 70 S (в органеллах)

Читайте также:  Размеры smd резисторов таблица

Имеется, состоит из аминосахаров и мурамовой кислоты

Отсутствует у животных клеток, у растительных клеток состоит главным образом из целлюлозы

Если имеется, то состоит из мукополисахаридов

Имеются (особенно у растительных клеток)

Мембраны с хлорофиллом и фикоцианином у сине-зеленых водорослей и с бактериохлоро-филлом у некоторых бактерий

Хлоропласты, содержащие хлорофиллы А и В, собранные в стопки (у растений)

Имеются у некоторых видов, но лишены структуры (9 + 2)

Имеются у некоторых видов и обладают структурой (9 + 2)

Источник

Рибосомы

Рибосомы являются важнейшими органоидами клетки, так как на них протекает процесс трансляции — синтез полипептида на матричной РНК (мРНК). Другими словами, рибосомы служат местом белкового синтеза.

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Отличие рибосом прокариот и эукариот

Соотношение по массе белков и РНК в рибосоме примерно поровну. Однако у прокариот белков меньше (около 40%).

Размеры как самих рибосом, так и субъединиц выражают в скорости их седиментации (осаждения) при центрифугировании. При этом S обозначает константу Сведберга — единицу, характеризующую скорость оседания в центрифуге (чем больше S, тем быстрее частица осаждается, а значит тяжелее). У прокариот рибосомы имеют размер в 70S, а у эукариот — в 80S (т. е. они тяжелее и крупнее). При этом субъединицы прокариотических рибосом имеют значения 30S и 50S, а эукариотических — 40S и 60S. Размеры рибосом в митохондриях и хлоропластах эукариот сходны с прокариотическими (хотя имеют определенную вариабельность по размерам), что может указывать на их происхождение от древних прокариотических организмов.

У прокариот в состав большой субъединицы рибосом входит две молекулы рРНК и более 30 молекул белка, в состав малой — одна молекула рРНК и около 20 белков. У эукариот в субъединицах больше молекул белка, а также в большой субъединице три молекулы рРНК. Составляющие рибосому белки и молекулы рРНК обладают способностью к самосборке и в итоге образуют сложную трехмерную структуру. Структуру рРНК поддерживают ионы магния.

Синтез рРНК

У эукариот в состав рибосом входят 4 вида рРНК. При этом три образуются из одного транскрипта-предшественника — 45S рРНК. Он синтезируется в ядрышке (на петлях хромосом его формирующем) при помощи РНК-полимеразы-1. Гены рРНК имеют много копий (десятки и сотни) и обычно располагаются на концах разных пар хромосом. После синтеза 45S рРНК разрезается на 18S, 5.8S и 28S рРНК, каждая из которых подвергается тем или иным модификациям.

Четвертый вид рРНК синтезируется вне ядрышка с помощью фермента РНК-полимеразы-3. Это 5S РНК, которая после синтеза не нуждается в процессинге.

Третичная структура рРНК в составе рибосом очень сложная и компактная. Она служит каркасом для размещения рибосомных белков, которые выполняют вспомогательные функции для поддержания структуры и функциональности.

Функция рибосом

Функционально рибосомы являются местом связывания молекул, участвующих в синтезе (мРНК, тРНК, различные факторы). Именно в рибосоме молекулы могут занять друг по отношению к другу такое положение, которое позволит быстро протечь химической реакции реакции.

В эукариотических клетках рибосомы могут находиться свободно в цитоплазме или быть прикрепленными с помощью специальных белков к ЭПС (эндоплазматическая сеть, она же ЭР — эндоплазматический ретикулум).

В процессе трансляции рибосома перемещается по мРНК. Часто по одной нитевидной мРНК двигаются несколько (или множество) рибосом, образуя так называемую полисому (полирибосому).

Источник

Характеристика рибосом, типы, структура, функции

рибосомы они являются наиболее распространенными клеточными органеллами и участвуют в синтезе белков. Они не окружены мембраной и образованы двумя типами субъединиц: большой и малой, как правило, большая субъединица почти вдвое меньше.

Прокариотическая линия имеет 70S рибосомы, состоящие из большой 50S субъединицы и небольшой 30S. Аналогично, рибосомы эукариотической линии состоят из большой субъединицы 60S и маленькой 40S субъединицы..

Рибосома является аналогом фабрики в движении, способной считывать РНК-мессенджер, переводить ее в аминокислоты и связывать их пептидными связями..

Рибосомы эквивалентны почти 10% от общего количества бактерий и более 80% от общего количества РНК. В случае эукариот их не так много по сравнению с другими белками, но их количество больше..

В 1950 году исследователь Джордж Паладе впервые визуализировал рибосомы, и это открытие было удостоено Нобелевской премии по физиологии и медицине..

  • 1 Общая характеристика
  • 2 Структура
  • 3 типа
    • 3.1 Рибосомы у прокариот
    • 3.2 Рибосомы у эукариот
    • 3.3 Рибосомы в Аркеасе
    • 3.4 Коэффициент седиментации
  • 4 функции
    • 4.1 Трансляция белков
    • 4.2 Передача РНК
    • 4.3 Химические стадии синтеза белка
    • 4.4 Рибосомы и антибиотики
  • 5 Синтез рибосом
    • 5.1 Рибосомные РНК-гены
  • 6 Происхождение и эволюция
  • 7 ссылок

Общие характеристики

Рибосомы являются важными компонентами всех клеток и связаны с синтезом белка. Они очень маленькие по размеру, поэтому их можно визуализировать только в свете электронного микроскопа..

Рибосомы свободны в цитоплазме клетки, они прикреплены к шероховатой эндоплазматической сети — рибосомы дают «морщинистый» вид — и в некоторых органеллах, таких как митохондрии и хлоропласты..

Рибосомы, прикрепленные к мембранам, ответственны за синтез белков, которые будут вставлены в плазматическую мембрану или отправлены наружу клетки..

Свободные рибосомы, которые не связаны с какой-либо структурой в цитоплазме, синтезируют белки, предназначение которых находится внутри клетки. Наконец, рибосомы митохондрий синтезируют белки для митохондриального использования..

Таким же образом несколько рибосом могут соединяться и образовывать «полирибосомы», образуя цепь, связанную с РНК-мессенджером, синтезируя один и тот же белок, многократно и одновременно

Все они состоят из двух подразделений: одно называется большим или большим, а другое маленьким или меньшим.

Некоторые авторы считают, что рибосомы являются не мембранными органеллами, поскольку им не хватает этих липидных структур, хотя другие исследователи сами не считают их органеллами..

Читайте также:  Вывод это вид таблица

структура

Рибосомы представляют собой небольшие клеточные структуры (от 29 до 32 нм, в зависимости от группы организмов), округлые и плотные, состоящие из рибосомальной РНК и белковых молекул, которые связаны друг с другом..

Наиболее изученными являются рибосомы эубактерий, архей и эукариот. В первой линии рибосомы проще и меньше. Эукариотические рибосомы, с другой стороны, являются более сложными и более крупными. У архей рибосомы в некоторых аспектах больше похожи на обе группы.

Рибосомы позвоночных и покрытосеменных (цветковых растений) особенно сложны.

Каждая рибосомная субъединица состоит в основном из рибосомальной РНК и большого разнообразия белков. Большая субъединица может состоять из небольших молекул РНК, в дополнение к рибосомальной РНК.

Белки связаны с рибосомальной РНК в определенных регионах, следуя порядку. В рибосомах можно дифференцировать несколько активных сайтов, таких как каталитические зоны.

Рибосомная РНК имеет решающее значение для клетки, и это можно увидеть в ее последовательности, которая практически не изменилась в ходе эволюции, отражая высокое селективное давление против любых изменений.

тип

Рибосомы у прокариот

Бактерии, как Кишечная палочка, имеют более 15000 рибосом (в пропорциях это эквивалентно почти четверти сухой массы бактериальной клетки).

Рибосомы в бактериях имеют диаметр около 18 нм и состоят из 65% рибосомальной РНК и только 35% белков различных размеров, от 6000 до 75000 кДа..

Большая субъединица называется 50S, а маленькая 30S, которые в совокупности образуют структуру 70S с молекулярной массой 2,5 × 10. 6 кД.

Субъединица 30S вытянута и не симметрична, тогда как 50S толще и короче.

Небольшая субъединица Кишечная палочка он состоит из 16S рибосомальной РНК (1542 основания) и 21 белка, а в большой субъединице — 23S рибосомальной РНК (2904 основания), 5S (1542 основания) и 31 белка. Белки, которые их составляют, являются основными, и их количество варьируется в зависимости от структуры..

Молекулы рибосомальной РНК вместе с белками группируются во вторичной структуре подобно другим типам РНК..

Рибосомы у эукариот

Рибосомы у эукариот (80S) крупнее, с более высоким содержанием РНК и белка. РНК длиннее и называются 18S и 28S. Как и у прокариот, в составе рибосом доминирует рибосомная РНК.

У этих организмов рибосома имеет молекулярную массу 4,2 × 10. 6 кДа, и он разбит на 40S и 60S субъединицу.

Субъединица 40S содержит одну молекулу РНК, 18S (1874 основания) и около 33 белков. Аналогично, субъединица 60S содержит 28S РНК (4718 оснований), 5,8S (160 оснований) и 5S (120 оснований). Кроме того, он состоит из основных белков и кислотных белков..

Рибосомы в Аркеасе

Археи представляют собой группу микроскопических организмов, которые напоминают бактерии, но они отличаются по многим характеристикам, которые составляют отдельный домен. Они живут в разных условиях и способны колонизировать экстремальные условия.

Типы рибосом, обнаруженные у архей, сходны с рибосомами эукариотических организмов, хотя они также имеют определенные характеристики бактериальных рибосом..

Он имеет три типа молекул рибосомальной РНК: 16S, 23S и 5S, связанные с 50 или 70 белками, в зависимости от вида исследования. По размеру рибосомы архей ближе к бактериальным (70S с двумя субъединицами 30S и 50S), но по своей первичной структуре они ближе к эукариотам.

Поскольку археи обычно обитают в средах с высокими температурами и высокими концентрациями соли, их рибосомы обладают высокой устойчивостью.

Коэффициент седиментации

S или Svedbergs, относится к коэффициенту оседания частиц. Выражает связь между постоянной скоростью седиментации между приложенным ускорением. Эта мера имеет временные измерения.

Обратите внимание, что Сведберги не являются добавками, так как они учитывают массу и форму частицы. По этой причине в бактериях рибосома, состоящая из субъединиц 50S и 30S, не добавляет 80S, а также субъединицы 40S и 60S не образуют рибосому 90S..

функции

Рибосомы отвечают за процесс синтеза белков в клетках всех организмов, являясь универсальным биологическим механизмом..

Рибосомы — вместе с РНК-переносчиком и РНК-мессенджером — способны декодировать сообщение ДНК и интерпретировать его в последовательности аминокислот, которые образуют все белки организма, в процессе, называемом трансляцией..

В свете биологии, перевод слова относится к изменению «языка» от нуклеотидных триплетов к аминокислотам..

Эти структуры являются центральной частью трансляции, где происходит большинство реакций, таких как образование пептидных связей и высвобождение нового белка.

Трансляция белков

Процесс образования белка начинается со связывания между РНК-мессенджером и рибосомой. Посланник движется через эту структуру в определенном конце, называемом «кодон начала цепи».

Когда РНК-мессенджер проходит через рибосому, образуется молекула белка, потому что рибосома способна интерпретировать сообщение, закодированное в мессенджере..

Это сообщение закодировано в триплетах нуклеотидов, в которых каждые три основания указывают определенную аминокислоту. Например, если РНК-мессенджер несет последовательность: AUG AUU CUU UUG GCU, образованный пептид состоит из аминокислот: метионина, изолейцина, лейцина, лейцина и аланина..

Этот пример демонстрирует «вырождение» генетического кода, поскольку более одного кодона — в данном случае CUU и UUG — кодируют аминокислоту одного типа. Когда рибосома обнаруживает стоп-кодон в РНК-мессенджере, трансляция заканчивается.

Рибосома имеет сайт A и сайт P. Сайт P связывает пептидил-тРНК, а в сайт A он входит в аминоацил-тРНК..

Передача РНК

Передающие РНК ответственны за транспортировку аминокислот к рибосоме и имеют последовательность, комплементарную триплету. Для каждой из 20 аминокислот, из которых состоят белки, существует транспортная РНК..

Химические стадии синтеза белка

Процесс начинается с активации каждой аминокислоты связыванием АТФ в комплексе аденозинмонофосфата, высвобождая высокоэнергетические фосфаты..

На предыдущем этапе получается аминокислота с избыточной энергией, и происходит связывание с соответствующей ей РНК-переносчиком с образованием комплекса аминокислота-тРНК. Здесь происходит высвобождение аденозинмонофосфата.

В рибосоме трансферная РНК находит РНК-мессенджер. На этом этапе последовательность переносящей или антикодонной РНК гибридизуется с кодоном или триплетом РНК-мессенджера. Это приводит к выравниванию аминокислоты с ее правильной последовательностью.

Фермент пептидилтрансфераза ответственен за катализ образования пептидных связей, которые связывают аминокислоты. Этот процесс потребляет большое количество энергии, так как он требует образования четырех высокоэнергетических связей для каждой аминокислоты, которая связывается с цепью.

Реакция удаляет гидроксильный радикал на СООН-конце аминокислоты и удаляет водород на NH-конце2 другой аминокислоты. Реактивные области двух аминокислот связывают и создают пептидную связь.

Рибосомы и антибиотики

Поскольку синтез белка является обязательным событием для бактерий, определенные антибиотики нацелены на рибосомы и различные стадии процесса трансляции..

Например, стрептомицин связывается с небольшой субъединицей, чтобы вмешиваться в процесс трансляции, вызывая ошибки при чтении РНК-мессенджера..

Другие антибиотики, такие как неомицины и гентамицины, также могут вызывать ошибки трансляции, связанные с небольшой субъединицей..

Синтез рибосом

Весь клеточный механизм, необходимый для синтеза рибосом, находится в ядрышке, плотной области ядра, которая не окружена мембранными структурами..

Читайте также:  Полная таблица баллов при кремлевской диеты

Ядрышко представляет собой вариабельную структуру, зависящую от типа клеток: оно крупное и заметное в клетках с высокими потребностями в белке и является практически незаметной областью в клетках, которые синтезируют небольшое количество белков.

Процессинг рибосомальной РНК происходит в этой области, где она связана с рибосомными белками и дает продукты гранулярной конденсации, которые являются незрелыми субъединицами, которые образовали функциональные рибосомы..

Субъединицы транспортируются вне ядра — через ядерные поры — в цитоплазму, где они собираются в зрелые рибосомы, которые могут начать синтез белка.

Гены рибосомальной РНК

У людей гены, кодирующие рибосомные РНК, обнаружены в пяти парах специфических хромосом: 13, 14, 15, 21 и 22. Поскольку клетки требуют большого количества рибосом, гены в этих хромосомах повторяются несколько раз.

Гены ядрышек кодируют рибосомальные РНК 5.8S, 18S и 28S и транскрибируются РНК-полимеразой в транскрипте-предшественнике 45S. 5S рибосомная РНК не синтезируется в ядрышке.

Происхождение и эволюция

Современные рибосомы, должно быть, появились во времена LUCA, последнего универсального общего предка (сокращений на английском языке). последний универсальный общий предок), вероятно, в гипотетическом мире РНК. Предполагается, что трансфер РНК были фундаментальными для эволюции рибосом.

Эта структура может появиться как комплекс с самореплицирующимися функциями, которые впоследствии приобретают функции для синтеза аминокислот. Одной из самых выдающихся характеристик РНК является ее способность катализировать собственную репликацию..

Источник

Различие между прокариотическими и эукариотическими рибосомами

главное отличие между прокариотическими и эукариотическими рибосомами является то, что прокариотические рибосомы — маленькие, рибосомы 70 , тогда как эукариотические рибосомы больше, рибосомы 80. Кро

Различие между прокариотическими и эукариотическими рибосомами

Содержание:

  • Что такое прокариотические рибосомы
  • Что такое эукариотические рибосомы
  • Сходство между прокариотическими и эукариотическими рибосомами
  • Различие между прокариотическими и эукариотическими рибосомами

главное отличие между прокариотическими и эукариотическими рибосомами является то, что прокариотические рибосомы — маленькие, рибосомы 70 S, тогда как эукариотические рибосомы больше, рибосомы 80S. Кроме того, прокариотические рибосомы встречаются свободно в цитоплазме, в то время как эукариотические рибосомы обычно связаны с внешней мембраной ядра и эндоплазматическим ретикулумом.

Прокариотические и эукариотические рибосомы являются клеточными машинами, которые облегчают трансляцию мРНК в аминокислотную последовательность. Оба типа рибосом состоят из большой и маленькой субъединиц. Каждая субъединица состоит из рРНК и рибосомных белков.

Ключевые области покрыты

1. Что такое прокариотические рибосомы
Определение, Подразделения, Роль
2. Что такое эукариотические рибосомы
Определение, Подразделения, Роль
3. Каковы сходства между прокариотическими и эукариотическими рибосомами
План общих черт
4. В чем разница между прокариотическими и эукариотическими рибосомами
Сравнение ключевых различий

Основные условия

Эукариотическая рибосома, большая субъединица, прокариотическая рибосома, малая субъединица, трансляция

Что такое прокариотические рибосомы

Прокариотические рибосомы — это небольшие рибосомы, участвующие в трансляции, в основном у бактерий и архей. Большая субъединица прокариотических рибосом составляет 50 с, а маленькая субъединица — 30 с. Структура больших и малых субъединиц прокариотических рибосом описана в следующей таблице.

Прокариотические рибосомы (Кишечная палочка)

Составная часть

Большая субъединица (50 с)

Малая Субъединица (30S)

— 23S рРНК (2904 нуклеотида)

— 5S рРНК (120 нуклеотидов)

— 16S рРНК (1542 нуклеотида)

Рисунок 1: Структура рибосомы
1 — большая субъединица, 2 — малая субъединица

Однако митохондрии и хлоропласты в эукариотических клетках также содержат рибосомы 70S, поскольку эти органеллы развиваются в результате эндосимбиоза.

Что такое эукариотические рибосомы

Эукариотические рибосомы — это крупные рибосомы, которые встречаются только в эукариотических клетках, таких как животные, растения, грибы и другие одноклеточные, эукариотические организмы. Их большая субъединица — 60S, а маленькая — 40S.

Эукариотические рибосомы (R. norvegicus)

Составная часть

Большая субъединица (60 с)

Малая субъединица (40S)

— 28S рРНК (4718 нуклеотидов)

— 5.8S рРНК (160 нуклеотидов)

— 5S рРНК (120 нуклеотидов)

— 18S рРНК (1874 нуклеотида)

Рисунок 2: Функция рибосомы

Большинство эукариотических рибосом связаны с мембраной, но некоторые свободны в цитоплазме. Основная функция рибосомы заключается в том, чтобы служить сайтом для синтеза белка путем облегчения связывания аминокислот в порядке, определяемом мРНК. Этот процесс известен как перевод. Более того, рибосомы также называют трансляционным аппаратом.

Сходство между прокариотическими и эукариотическими рибосомами

  • Прокариотические и эукариотические рибосомы представляют собой клеточные структуры, которые облегчают декодирование последовательности кодона в мРНК в аминокислотную последовательность функционального белка.
  • Оба типа рибосом встречаются в цитоплазме.
  • Они состоят из большой и маленькой субъединицы. Каждая субъединица представляет собой комплекс рибонуклеопротеинов, состоящий из рРНК и рибосомных белков.
  • Небольшая субъединица прокариотических рибосом состоит из одной рРНК.

Различие между прокариотическими и эукариотическими рибосомами

Определение

Прокариотические рибосомы относятся к свободным рибосомам у прокариот, а эукариотические рибосомы относятся к большим рибосомам, которые облегчают трансляцию у эукариот.

Нашел в

Прокариотические рибосомы обнаружены внутри бактерий и архей, в то время как эукариотические рибосомы обнаружены у животных, растений, грибов и других одноклеточных эукариот с ядром.

Размер

Прокариотические рибосомы маленькие, а эукариотические рибосомы больше. Кроме того, масса прокариотической рибосомы составляет 27000 кд, тогда как масса эукариотических рибосом составляет 42000 кд.

Коэффициент седиментации

Коэффициент седиментации прокариотических рибосом составляет 70S, тогда как коэффициент седиментации эукариотических рибосом составляет 80S.

Диаметр

Диаметр прокариотической рибосомы составляет

200 Å, тогда как диаметр эукариотической рибосомы составляет

субъединицы

Прокариотические рибосомы состоят из 50S и 30S субъединиц, а эукариотические рибосомы состоят из 60S и 40S субъединиц.

Количество рРНК в молекулах в большой субъединице

Большая субъединица прокариотических рибосом состоит из двух молекул рРНК: 23S рРНК и 5S рРНК, тогда как большая субъединица эукариотических рибосом состоит из трех молекул рРНК; 28S рРНК, 5,3S рРНК и 5S рРНК.

рРНК в рибосомальный белок рацион

Прокариотические рибосомы состоят из 60% рРНК и 40% рибосомных белков, тогда как эукариотические рибосомы состоят из 40% рРНК и 60% рибосомных белков.

Место нахождения

Прокариотические рибосомы встречаются свободно в цитоплазме, в то время как большинство эукариотических рибосом прикрепляются к внешней поверхности ядра и эндоплазматической сети.

Заключение

Прокариотические рибосомы являются бактериальными рибосомами, которые являются небольшими (70S), в то время как эукариотические рибосомы являются большими рибосомами (80S). Прокариотические рибосомы встречаются в цитоплазме свободно, в то время как большинство эукариотических рибосом связаны с мембраной. Оба типа рибосом состоят из двух субъединиц, называемых большой и маленькой субъединиц. Основное различие между прокариотическими и эукариотическими рибосомами заключается в размере и расположении рибосом в клетке.

Ссылка:

1. Берг, Джереми М. «Синтез белка эукариот отличается от синтеза белка прокариот, прежде всего при инициации трансляции».Достижения в педиатрии.Национальная медицинская библиотека США, 1 января 1970 г.

Источник

Adblock
detector