Меню

Решение кубического уравнения с помощью таблицы

Решение кубических уравнений — методы и примеры вычислений

Содержание

  1. История и формулировки
  2. Формула квадратного уравнения
  3. Разложение на множители
  4. Использование дискриминанта
  5. Теорема Виета и двучлен
  6. Подробный онлайн-калькулятор

Всё, что окружает человека, в какой-то мере связано с математикой. Пожалуй, не одно значимое открытие в физике, химии не обходится без составления формул. Особое место при расчётах занимают кубические уравнения. Решение практических задач очень важно, поэтому необходимо уметь проводить вычисления. Существуют различные подходы, позволяющие довольно быстро найти ответ. Поэтому нужно не только знать принцип решения, но и правильно подобрать метод.

История и формулировки

Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.

Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.

Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию. Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов.

В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано. Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа. Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.

Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.

Таким образом, в кубических уравнениях стоит только одна переменная в третьей степени. Они всегда имеют три корня. При этом ответы могут быть равны друг другу и даже быть комплексными (но не более двух).

Источник



Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x i Коэффициенты многочлена
2 — 11 12 9
— 0 . 5 2 — 11 + 2 · ( — 0 . 5 ) = — 12 12 — 12 · ( — 0 . 5 ) = 18 9 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Источник

Схема Горнера

Схема Горнера – способ деления многочлена

на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:

gorner

После деления многочлена n-ой степени на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Непосредственное применение схемы Горнера проще всего показать на примерах.

Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена $5x^4+5x^3+x^2-11$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0. Так как мы делим на $x-1$, то во второй строке запишем единицу:

gorner

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его из соответствующей ячейки первой строки:

gorner

Следующую ячейку заполним по такому принципу: $1\cdot 5+5=10$:

gorner

Аналогично заполним и четвертую ячейку второй строки: $1\cdot 10+1=11$:

gorner

Для пятой ячейки получим: $1\cdot 11+0=11$:

gorner

И, наконец, для последней, шестой ячейки, имеем: $1\cdot 11+(-11)=0$:

gorner

Задача решена, осталось только записать ответ:

gorner

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $5x^4+5x^3+x^2-11$ на $x-1$. Естественно, что так как степень исходного многочлена $5x^4+5x^3+x^2-11$ равнялась четырём, то степень полученного многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена $5x^4+5x^3+x^2-11$ на $x-1$. В нашем случае остаток равен нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю, то единица является корнем многочлена $5x^4+5x^3+x^2-11$.

Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.

Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Так как степень исходного многочлена $x^4+3x^3+4x^2-5x-47$ равна четырём, то в результате деления получим многочлен третьей степени:

gorner

Полученный результат означает, что

$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$

В этой ситуации остаток от деления $x^4+3x^3+4x^2-5x-47$ на $x+3$ равна $4$. Или, что то самое, значение многочлена $x^4+3x^3+4x^2-5x-47$ при $x=-3$ равно $4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:

$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$

Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель – найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, – до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.

Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.

Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; \; 15; \; 9; \; 5; \; 3; \; 1$ и $-45; \; -15; \; -9; \; -5; \; -3; \; -1$. Проверим, к примеру, число $1$:

gorner

Как видите, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу для этого составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.

Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.

gorner

Итак, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=-1$ равно нулю, т.е. число $-1$ есть корень этого многочлена. После деления многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2 (см. пример №1). Результат вычислений можно также представить в такой форме:

Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, – числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:

gorner

Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:

Учитывая равенство (2), равенство (1) можно переписать в такой форме:

Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, – естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:

gorner

Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:

С учетом равенства (4), равенство (3) перепишем в такой форме:

Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:

gorner

Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:

gorner

В остатке ноль, посему число $3$ – корень рассматриваемого многочлена. Итак, $x^3-x^2-21x+45=(x-3)(x^2+2x-15)$. Теперь равенство (5) можно переписать так:

Проверим ещё раз число $3$:

gorner

Полученный результат можно записать так (это продолжение равенства (6)):

Из последней скобки видно, что число $-5$ также является корнем данного многочлена. Можно, конечно, формально продолжить схему Горнера, проверив значение $x=-5$, но необходимости в этом нет. Итак,

Числа $-1; \; 3; \; 5$ – корни данного многочлена. Причем, так как скобка $(x+1)$ в третьей степени, то $-1$ – корень третьего порядка; так как скобка $(x-3)$ во второй степени, то $3$ – корень второго порядка; так как скобка $(x+5)$ в первой степени, то $x=-5$ – корень первого порядка (простой корень).

Вообще, обычно оформление таких примеров состоит из таблицы, в которой перебираются возможные варианты корней, и ответа:

gorner

Из таблицы следует вывод, полученный нами ранее с подробным решением:

Убедиться, что числа $2$ и $-5$ являются корнями многочлена $3x^6+9x^5-28x^4+6x^3-30x^2-30x+100$. Разделить заданный многочлен на биномы $x-2$ и $x+5$.

Степень многочлена $3x^6+9x^5-28x^4+6x^3-30x^2-30x+100$ равна $6$. После деления на два заданных бинома степень заданного многочлена уменьшится на $2$, т.е. станет равна $4$.

gorner

Конечно, данный метод подбора малоэффективен в общем случае, когда корни не являются целыми числами, но для целочисленных корней метод довольно-таки неплох.

Источник

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.

Кубическим уравнением называется уравнение вида

  • ax 3 + bx 2 + cx +d = 0 , (1)
  • где a, b,c ,d — постоянные коэффициенты, а х — переменная.

Мы рассмотрим случай, когда коэффициенты являются веществеными числами.

Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.

Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.

Кубическое уравнение имеет не более трех корней (над комплексным полем всегда три корня, с учетом кратности) . И всегда имеет хотя бы 1 (вещественный) корень. Все возможные случаи состава корней легко определить с помощью знака дискриминанта кубического уравнения, т.е.:

Δ= -4b 3 d + b 2 c 2 — 4ac 3 + 18abcd — 27a 2 d 2 (Да, это дискриминант кубического уравнения)

Итак, возможны только 3 следующих случая:

  • Δ > 0 — тогда уравнение имеет 3 различных корня. (Для продвинутых — три различных вещественных корня)
  • Δ 3 + py + q = 0 (2)

К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:

Итак, приступим к вычислению корней. Найдем следующие величины:

Дискриминант уравнения (2) в этом случае равен

Дискриминант исходного уравнения (1) будет иметь тот же знак , что и вышеуказанный дискриминант. Корни уравнения (2) выражаются следующим образом:

Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).

Если Q 3 + ax 2 + bx +c = 0 (4)

Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.

Итак, алгоритм применения этой формулы:

3. a) Если S>0, то вычисляем

И наше уравнение имеет 3 корня (вещественных):

Тогда единственный корень (вещественный): x1= -2sgn(R)*|Q| 1/2 *ch(φ) — a/3

Для тех, кого интересуют также и мнимые корни:

  • x2= sgn(R)*|Q| 1/2 *ch(φ) — a/3 +(3|Q|) 1/2 sh(φ)i
  • x3= sgn(R)*|Q| 1/2 *ch(φ) — a/3 -(3|Q|) 1/2 sh(φ)i

ГДЕ:

  • ch(x)=(e x +e -x )/2
  • Arch(x) = ln(x + (x 2 -1) 1/2 )
  • sh(x)=(e x -e -x )/2
  • sgn(x) — знак х

в) Если S=0,то уравнение имеет меньше трех различных решений:

  • x1= -2*R 1/3 — a/3
  • x2=x3=R 1/3 — a/3

Консультации и техническая
поддержка сайта: Zavarka Team

Источник

Решение кубических уравнений — методы и примеры вычислений

История и формулировки

Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.

Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.

Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию. Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов.

В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано. Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа. Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.

Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.

Таким образом, в кубических уравнениях стоит только одна переменная в третьей степени. Они всегда имеют три корня. При этом ответы могут быть равны друг другу и даже быть комплексными (но не более двух).

Формула квадратного уравнения

Используется при решении простейшего равенства методом разложения кубического уравнения на множители. Когда последний член равен нулю, решить такую задачу можно по методу квадратных уравнений. При n = 0, уравнение примет вид :

a*y 3 + d*y 2 + c*y + n = 0.

В полученном выражении каждый член представлен произведением на неизвестное, поэтому переменную y можно вынести за скобки: y*(d*y 2 + c) = 0. Уравнение в скобках является классическим квадратным, которое можно решать несколькими способами:

  • разложением на множители;
  • с использованием формулы корней квадратного уравнения;
  • методом дополнения.

При выборе первого варианта разложение выполняют следующим образом. Например, необходимо решить равенство вида: *y 2 — 11*y — 16 = 0. Квадратный член можно записать в виде двух множителей: 3*y и y. Поэтому их можно записать сразу как произведение в скобках: (3 * + n) * (y + n) = 0. Так как определённый член можно записать в виде произведения 2*2 или 1*4, то формулу можно представить как (3 *y +1) * (y — 16).

Если раскрыть скобки, то получится равенство 3*y 2 — 12 *y + y + 16. Решением (-12*y + y) будет (-11*y). Как раз тот член, который нужен. Используя же произведение 2*2 — искомый член найти не получится.

Равенство раскладывают на два множителя: (3*y +1) (х — 16) = 0. Согласно аксиоме произведение двух членов равно нулю только тогда, когда хотя бы один из них равен нулю. Приравняв каждое выражение в скобках к нулю, можно записать два равенства: 3*y + 1 = 0 и y — 16 = 0. При решении каждого из них получится два ответа: y = 1/3 и y = 16.

Для проверки результата необходимо оба возможных решения подставить в формулу. Так как для квадратного уравнения существует только два решения, а для кубического три, то в этом случае третьим ответом будет ноль. Поэтому решением уравнения будет три корня: 0, 1/3, 16.

Но проще и нагляднее всего использовать второй вариант. Формула корней кубического уравнения имеет вид: y = ((-d + (d 2 — 4*a*c) ½ ) / 2*a и y = ((-d — (d 2 — 4*a*c) ½ ) / 2*a. Корни квадратного уравнения и будут ответом для кубического. Например, 5*y 2 — 7*y — 14 = 0. Приняв, что a = 5, d = -7, c = — 14 и подставив числовые значения, будет верным запись: y = 1 4 / 5 и y = -1. Дробное решение и отрицательное будет являться корнями кубического равенства.

Разложение на множители

Если определённый член не равен нулю, то посчитать игрек при помощи квадратных уравнений невозможно. В этом случае используется метод разложения на свободные множители. Например, 2 * y 3 + 9 * y 2 +13 * y + 6 = 0. Чтобы разложить кубическое уравнение на множители и определить неизвестное, придерживаются следующего порядка:

  1. Вычисляют множитель кубического коэффициента и свободного члена. Это те числа, которые при умножении друг на друга дают исходное число. Например, цифру шесть можно представить перемножением 6*1 и 2*3, то есть множителями шести являются: 1, 2, 3, 6. Коэффициентом кубического члена является двойка, соответственно её множители — цифры один и два.
  1. Выполняют деление множителей кубического члена на цифры разложения свободного. В результате действия получится набор, состоящий из дробных частей и целых чисел, при этом они могут быть и отрицательными. Для уравнения 2 * y 3 + 9 * y 2 +13 * y + 6 = 0 такой набор будет состоять из 1, -1, ½, -½, 1/3, -1/3, 1/6, -1/6, 2, -2, 2/3, -2/3 .
  2. Определяют ряды чисел, в которых существуют рациональные решения кубического выражения. Для рассматриваемого примера они будут следующие: -1*2 = -2; 9 + (-2) = 7; (-1) * 7 = -7; 13 +(-7) = 6; (-1)*6 = -6; 6+(-6) = 0 .

Вычисление рационального числа операция долгая и требующая внимания. Поэтому для быстрого нахождения ответа используется деление по схеме Горнера. По этой схеме выполняют деление целых цифр на коэффициенты всех членов равенства. Если в ответе получается только целая часть, то эти числа считаются вариантами решения. Таким методом можно находить и иррациональные выражения.

Чтобы освоить способ Горнера, необходимо тщательно в нём разобраться. Способ заключается в делении коэффициентов многочлена без учёта степенных показателей. Вычитание заменяется сложением как при делении в столбик. То есть уравнение, впрочем, как и неравенство, вида y 3 + 2*y 2 — 4 *y + 8, записывается как 1 2 -4 8 с необходимым делимым. В результате должен получиться многочлен с остатком. Если он будет нулевым, то одним из ответов уравнения и будет делимое .

Использование дискриминанта

Дискриминант степенного выражения представляет произведение квадратов разностей корней в различных сочетаниях. Другими словами, берут пару, состоящую из любых корней уравнения, вычитают друг из друга и возводят в квадрат. Это и будет один множитель. Затем берут другую пару и повторяют действия. Таким образом, перебирают все варианты.

При решении кубических равенств используют значения коэффициентов. Например, для уравнения y 3 — 3* y 2 + 3* y — 1, они будут равны: a = 1, d = -3, c = 3, n = -1. Затем вычисляют дельта нулевое. Это ключевая величина, которая после подставляется в формулу. В примере, Δ0 = d 2 — 3 * a * c, определяют как (-3) 2 — 3 * (1) * (3) = 9 − 3 * 3 = 0 .

Затем находят дельта один. Δ1 = 2 * d 3 — 9 * a * d * c + 27 * a 2 * n. Подставив значения в формулу, вычисляют Δ1:

2 (-3) 3 — 9 (1)(-3)*(3) + 27 (1) 2 * (-1) = 2 (-27) — 9 (-9) + 27 (-1) = -54 + 81 — 27 = 81 − 81 = 0 = Δ 1.

Используя найденное, по аналогии с квадратичным равенством находят дискриминант: d 2 — 4 * a * c. Применительно к кубическому виду применяется правило, что показатель отрицательный, когда уравнение может иметь только одно решение. Если же его значение равно нулю — одно или два. Уравнение кубического вида всегда должно иметь хотя бы одно решение, так как его график должен проходить через ось икс.

Так как в примере дельта-ноль и один равны нулю, то можно использовать следующее выражение:

  • Δ1 2 — 4 * Δ0 3 / — 27 *a 2 ;
  • (0) 2 — 4 * (0) 3 / — 27 * (1) 2 ;
  • (0−0) / 27;
  • Δ = 0.

Исходя из этого, уравнение имеет два решения. Вычислив С, можно определить возможные решения уравнения. Заменив по мере необходимости дельты, решается равенство:

C = ((Δ 1 2 — 4 Δ 0 3 ) +Δ) / 2) ½ = (((0 — 0) + 0)/2) ½ = 0.

Корни куба определяются по формуле: u n C + Δ0/(u n C)) / 3*a, где u = (-1 + √(-3))/2, а n равно одному, двум или трём. Если подставить эти значения в равенство, и оно будет верным, то эта цифра и является возможным решением уравнения. Этот способ показательный, но довольно сложный. Но если его понять, то проблем с решением уравнений любой сложности возникнуть не должно.

Теорема Виета и двучлен

Выражение вида: a*y 3 + d = 0 называется двухчленным или неполным уравнением. Для его решения нужно равенство привести к виду: y 3 + d/a = 0. Затем используя формулу сокращённого умножения для суммы кубов можно записать:

(y + 3 √ d/a) * (y 2 − ( 3 √ d/a)* y + 3 √ (d/a) 2 ) = 0.

Из первого множителя и находят значение игрека. Оно будет равно 3 √ d/a, ведь второй множитель — это квадратный трёхчлен с корнями комплексного вида.

Для проверки рациональных равенств удобно применять теорему Виета. Согласно ей корни уравнения связаны с коэффициентами выражениями:

  • y1 + y2 + y3 = — d/a;
  • y1 * y2 + y2 * y3 + y1 * y3 = c/a;
  • y1 * y2 * y3 = — n/a.

Используя теорему, некоторые уравнения можно решить даже устно. Например, y 3 + 2y — 24 = 0. Решение выполняется в следующей последовательности:

  • записывают теорему применительно к равенству;
  • определяют знаки корней;
  • раскладывают определённый член.

Частным случаем применения теоремы являются тригонометрические формулы для кубического равенства:

S = Q 3 — R 2 , где Q = (a2 — 3d)/9, а R = (2 а 3 — 9ad + 27c) / 54.

В зависимости от знака S применяется одна из следующих формул : φ = (arcos (R/Q 3/2 ))/3 и φ = (arcos (ЇRЇ/Q 3/2 ))/3. Первое выражение справедливо при S > 0 и имеет три корня: y 1 = -2 (Q) ½ * cos (φ) — a/3; y 2 = — (Q) ½ cos (φ + 2p /3) — a/3; y 3 = -2 (Q) ½ * cos (φ — 2p/3) — a/3. А второе при S ½ * ch (φ) — a/3. В случае же когда S=0,то уравнение имеет следующие корни: y 1= -2*R1 /3 — a/3; y 2= y 3 =R1/3 — a/3.

Теорему Виета можно использовать и для наивысшей, четвёртой степени, при которой ещё существует аналитическое решение.

Подробный онлайн-калькулятор

Вычисление корней требует внимательности и усердия. Чтобы быстро находить решение, нужно не только знание теории, но и практические занятия. Конечно же, знать формулы и уметь решать уравнения нужно самому.

Но при самостоятельном вычислении существует вероятность допущения ошибки. Поэтому на помощь приходят своего рода решебники-онлайн. Они умеют не только точно и быстро определять корни равенства, но и показывать подробное вычисление. Благодаря этому можно не просто получить правильный ответ, но и разобраться в решении, понять различные нюансы, проверить свои знания.

Из наиболее популярных интернет-порталов, позволяющих найти корни кубического уравнения онлайн, можно выделить: mathforyou. net, allcalc.ru, wedmath.ru, kontrolnaya-radota.ru. Воспользоваться такими сайтами-решателями сможет любой пользователь, даже не имеющий представление о методах решения уравнений.

Для этого нужно просто заполнить предлагаемые на странице поля и нажать кнопку «Рассчитать» или «Решить». Калькулятор сам на основании запрограммированных формул, чаще всего по методу Вието — Кардано, выполнит расчёт и выведет на экран ответ. Кроме этого, будет предложено подробное решение с описанием. На этих сайтах также можно посмотреть и примеры решений, формулы, теоремы.

Источник

Читайте также:  Опылители для абрикосов таблица
Adblock
detector