Меню

Принципы кодировки таблицы кодировки символов

Принципы кодировки таблицы кодировки символов

Содержание

  • 1 Windows-1251
  • 2 cp866
  • 3 KOI8
  • 4 Юникод (Unicode)

Исторически так сложилось, что кириллическая кодировка существует в нескольких видах.

Windows-1251

Кодировка Windows-1251 (cp1251) является стандартной 8-битной кодировкой для всех русских версий Microsoft Windows. У неё существуют разновидности: казахская, чувашская и т.д. Первая часть таблицы кодировки (латиница) полностью соответствует кодировке ASCII. Вторая часть (под символами указаны шестнадцатеричные коды Unicode) приводится ниже:

1 2 3 4 5 6 7 8 9 A B C D E F
8 Ђ
0402
Ѓ
0403

201A
ѓ
0453

201E

2026

2020

2021

20AC

2030
Љ
0409

2039
Њ
040A
Ќ
040C
Ћ
040B
Џ
040F
9 ђ
0452

2018

2019

201C

201D

2022

2013

2014

2122
љ
0459

203A
њ
045A
ќ
045C
ћ
045B
џ
045F
A 00A0 Ў
040E
ў
045E
Ј
0408
¤
00A4
Ґ
0490
¦
00A6
§
00A7
Ё
0401
©
00A9
Є
0404
«
00AB
¬
00AC
­
00AD
®
00AE
Ї
0407
B °
00B0
±
00B1
І
0406
і
0456
ґ
0491
µ
00B5

00B6
·
00B7
ё
0451

2116
є
0454
»
00BB
ј
0458
Ѕ
0405
ѕ
0455
ї
0457
C А
0410
Б
0411
В
0412
Г
0413
Д
0414
Е
0415
Ж
0416
З
0417
И
0418
Й
0419
К
041A
Л
041B
М
041C
Н
041D
О
041E
П
041F
D Р
0420
С
0421
Т
0422
У
0423
Ф
0424
Х
0425
Ц
0426
Ч
0427
Ш
0428
Щ
0429
Ъ
042A
Ы
042B
Ь
042C
Э
042D
Ю
042E
Я
042F
E а
0430
б
0431
в
0432
г
0433
д
0434
е
0435
ж
0436
з
0437
и
0438
й
0439
к
043A
л
043B
м
043C
н
043D
о
043E
п
043F
F р
0440
с
0441
т
0442
у
0443
ф
0444
х
0445
ц
0446
ч
0447
ш
0448
щ
0449
ъ
044A
ы
044B
ь
044C
э
044D
ю
044E
я
044F

cp866

В консоли русифицированных систем семейства Windows NT используется кодировка cp866. Первая часть таблицы кодировки (латиница) полностью соответствует кодировке ASCII. Вторая часть (под символами указаны шестнадцатеричные коды Unicode):

Для кодировки cp866 существуют разновидности (чувашская, ГОСТ 19768-87 и т.д.).

1 2 3 4 5 6 7 8 9 A B C D E F
8 А
0410
Б
0411
В
0412
Г
0413
Д
0414
Е
0415
Ж
0416
З
0417
И
0418
Й
0419
К
041A
Л
041B
М
041C
Н
041D
О
041E
П
041F
9 Р
0420
С
0421
Т
0422
У
0423
Ф
0424
Х
0425
Ц
0426
Ч
0427
Ш
0428
Щ
0429
Ъ
042A
Ы
042B
Ь
042C
Э
042D
Ю
042E
Я
042F
A а
0430
б
0431
в
0432
г
0433
д
0434
е
0435
ж
0436
з
0437
и
0438
й
0439
к
043A
л
043B
м
043C
н
043D
о
043E
п
043F
B
2591

2592

2593

2502

2524

2561

2562

2556

2555

2563

2551

2557

255D

255C

255B

2510
C
2514

2534

252C

251C

2500

253C

255E

255F

255A

2554

2569

2566

2560

2550

256C

2567
D
2568

2564

2565

2559

2558

2552

2553

256B

256A

2518

250C

2588

2584

258C

2590

2580
E р
0440
с
0441
т
0442
у
0443
ф
0444
х
0445
ц
0446
ч
0447
ш
0448
щ
0449
ъ
044A
ы
044B
ь
044C
э
044D
ю
044E
я
044F
F Ё
0401
ё
0451
Є
0404
є
0454
Ї
0407
ї
0457
Ў
040E
ў
045E
°
00B0

2219
·
00B7

221A

2116
¤
00A4

25A0
00A0

Стандартом для русской кириллицы в юникс-подобных операционных системах является кодировка КОИ-8 (код обмена информацией, 8 битов), или KOI8. Существует несколько вариантов кодировки КОИ-8 для различных кириллических алфавитов. Русский алфавит описывается в кодировке KOI8-R, украинский — в KOI8-U, существуют также кодировки KOI8-RU (русско-белорусско-украинская), KOI8-T (таджикская) и т.д.

Разработчики КОИ-8 разместили символы русского алфавита таким образом, что если в тексте, написанном в КОИ-8, убирать восьмой бит каждого символа, то получается «читабельный» текст, хотя он и написан латинскими символами.

Вторая часть кодировки KOI8-R (русская), под символами указаны шестнадцатеричные коды Unicode:

1 2 3 4 5 6 7 8 9 A B C D E F
8
2500

2502

250C

2510

2514

2518

251C

2524

252C

2534

253C

2580

2584

2588

258C

2590
9
2591

2592

2593
⌠23
20

25A0

2219

221A

2248

2264

2265
00A0
2321
°
00B0
²
00B2
·
00B7
÷
00F7
A
2550

2551

2552
ё
0451

2553

2554

2555

2556

2557

2558

2559

255A

255B

255C

255D

255E
B
255F

2560

2561
Ё
0401

2562

2563

2564

2565

2566

2567

2568

2569

256A

256B

256C
©
00A9
C ю
044E
а
0430
б
0431
ц
0446
д
0434
е
0435
ф
0444
г
0433
х
0445
и
0438
й
0439
к
043A
л
043B
м
043C
н
043D
о
043E
D п
043F
я
044F
р
0440
с
0441
т
0442
у
0443
ж
0436
в
0432
ь
044C
ы
044B
з
0437
ш
0448
э
044D
щ
0449
ч
0447
ъ
044A
C Ю
042E
А
0410
Б
0411
Ц
0426
Д
0414
Е
0415
Ф
0424
Г
0413
Х
0425
И
0418
Й
0419
К
041A
Л
041B
М
041C
Н
041D
О
041E
D П
041F
Я
042F
Р
0420
С
0421
Т
0422
У
0423
Ж
0416
В
0412
Ь
042C
Ы
042B
З
0417
Ш
0428
Э
042D
Щ
0429
Ч
0427
Ъ
042A

Юникод (Unicode)

В Юникоде нет русских букв с ударением, поэтому приходится их делать составными, добавляя символ U+0301 («combining acute accent») после ударной гласной (например, ы́ э́ ю́ я́).

Источник



Кодирование текстовой информации

С точки зрения ЭВМ текст состоит из отдельных символов. К числу символов принадлежат не только буквы (заглавные или строчные, латинские или русские), но и цифры, знаки препинания, спецсимволы типа «=», «(«, «&» и т.п. и даже (обратите особое внимание!) пробелы между словами. Да, не удивляйтесь: пустое место в тексте тоже должно иметь свое обозначение.

Вспомним некоторые известные нам факты:

Множество символов, с помощью которых записывается текст, называется алфавитом.

Число символов в алфавите – это его мощность.

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные нам буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в двоичном коде. Это значит, что каждый символ представляется 8-разрядным двоичным кодом.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер — по их коду.

Удобство побайтового кодирования символов очевидно, поскольку байт — наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Читайте также:  Таблица год выпуска ижевские ружья

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII


Порядковый номер


Символ


0 — 31


00000000 — 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 — 127


00100000 — 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 — пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 — 255


10000000 — 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII

Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII

К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 («Код обмена информацией, 8-битный»). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 («CP» означает «Code Page», «кодовая страница»).

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode. Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Источник

Кодирование символов

Кодировка символов (часто называемая также кодовой страницей ) – это набор числовых значений, которые ставятся в соответствие группе алфавитно-цифровых символов, знаков пунктуации и специальных символов.

Для кодировки символов в Windows используется таблица ASCII (American Standard Code for Interchange of Information).

В ASCII первые 128 символов всех кодовых страниц состоят из базовой таблицы символов. Первые 32 кода базовой таблицы, начиная с нулевого, размещают управляющие коды.

Символ Код Клавиши Значение
nul Ctrl + @ Нуль
soh 1 Ctrl + A Начало заголовка
stx 2 Ctrl + B Начало текста
etx 3 Ctrl + C Конец текста
eot 4 Ctrl + D Конец передачи
enq 5 Ctrl + E Запрос
ack 6 Ctrl + F Подтверждение
bel 7 Ctrl + G Сигнал (звонок)
bs 8 Ctrl + H Забой (шаг назад)
ht 9 Ctrl + I Горизонтальная табуляция
lf 10 Ctrl + J Перевод строки
vt 11 Ctrl + K Вертикальная табуляция
ff 12 Ctrl + L Новая страница
cr 13 Ctrl + M Возврат каретки
so 14 Ctrl + N Выключить сдвиг
si 15 Ctrl + O Включить сдвиг
dle 16 Ctrl + P Ключ связи данных
dc1 17 Ctrl + Q Управление устройством 1
dc2 18 Ctrl + R Управление устройством 2
dc3 19 Ctrl + S Управление устройством 3
dc4 20 Ctrl + T Управление устройством 4
nak 21 Ctrl + U Отрицательное подтверждение
syn 22 Ctrl + V Синхронизация
etb 23 Ctrl + W Конец передаваемого блока
can 24 Ctrl + X Отказ
em 25 Ctrl + Y Конец среды
sub 26 Ctrl + Z Замена
esc 27 Ctrl + [ Ключ
fs 28 Ctrl + \ Разделитель файлов
gs 29 Ctrl + ] Разделитель группы
rs 30 Ctrl + ^ Разделитель записей
us 31 Ctrl + _ Разделитель модулей

Базовая таблица кодировки ASCII

32 пробел 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ‘ 55 7 71 G 87 W 103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 x
41 ) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [ 107 k 123 <
44 , 60 78 N 94 ^ 110 n 126

Символы с номерами от 128 до 255 представляют собой таблицу расширения и варьируются в зависимости от набора скриптов, представленных кодировкой символов. Набор символов таблицы расширения различается в зависимости от выбранной кодовой страницы:

1251 – кодовая страница Windows

128 Ђ 144 Ђ 160 176 ° 192 А 208 Р 224 а 240 р
129 Ѓ 145 ‘ 161 Ў 177 ± 193 Б 209 С 225 б 241 с
130 ‚ 146 ’ 162 ў 178 I 194 В 210 Т 226 в 242 т
131 ѓ 147 “ 163 J 179 i 195 Г 211 У 227 г 243 у
132 „ 148 ” 164 ¤ 180 ґ 196 Д 212 Ф 228 д 244 ф
133 … 149 • 165 Ґ 181 μ 197 Е 213 Х 229 е 245 х
134 † 150 – 166 ¦ 182 ¶ 198 Ж 214 Ц 230 ж 246 ц
135 ‡ 151 — 167 § 183 · 199 З 215 Ч 231 з 247 ч
136 € 152 □ 168 Ё 184 ё 200 И 216 Ш 232 и 248 ш
137 ‰ 153 ™ 169 © 185 № 201 Й 217 Щ 233 й 249 щ
138 Љ 154 љ 170 Є 186 є 202 К 218 Ъ 234 к 250 ъ
139 171 « 187 » 203 Л 219 Ы 235 л 251 ы
140 Њ 156 њ 172 ¬ 188 j 204 М 220 Ь 236 м 252 ь
141 Ќ 157 ќ 173 189 S 205 Н 221 Э 237 н 253 э
142 Ћ 158 ћ 174 ® 190 s 206 О 222 Ю 238 о 254 ю
143 Џ 159 џ 175 Ï 191 ї 207 П 223 Я 239 п 255 я

866 – кодовая страница DOS

128 А 144 Р 160 а 176 ░ 192 └ 208 ╨ 224 р 240 ≡Ё
129 Б 145 С 161 б 177 ▒ 193 ┴ 209 ╤ 225 с 241 ±ё
130 В 146 Т 162 в 178 ▓ 194 ┬ 210 ╥ 226 т 242 ≥
131 Г 147 У 163 г 179 │ 195 ├ 211 ╙ 227 у 243 ≤
132 Д 148 Ф 164 д 180 ┤ 196 ─ 212 ╘ 228 ф 244 ⌠
133 Е 149 Х 165 е 181 ╡ 197 ┼ 213 ╒ 229 х 245 ⌡
134 Ж 150 Ц 166 ж 182 ╢ 198 ╞ 214 ╓ 230 ц 246 ¸
135 З 151 Ч 167 з 183 ╖ 199 ╟ 215 ╫ 231 ч 247 »
136 И 152 Ш 168 и 184 ╕ 200 ╚ 216 ╪ 232 ш 248 °
137 Й 153 Щ 169 й 185 ╣ 201 ╔ 217 ┘ 233 щ 249 ·
138 К 154 Ъ 170 к 186 ║ 202 ╩ 218 ┌ 234 ъ 250 ∙
139 Л 155 Ы 171 л 187 ╗ 203 ╦ 219 █ 235 ы 251 √
140 М 156 Ь 172 м 188 ╝ 204 ╠ 220 ▄ 236 ь 252 ⁿ
141 Н 157 Э 173 н 189 ╜ 205 ═ 221 ▌ 237 э 253 ²
142 О 158 Ю 174 о 190 ╛ 206 ╬ 222 ▐ 238 ю 254 ■
143 П 159 Я 175 п 191 ┐ 207 ╧ 223 ▀ 239 я 255

Русские названия основных спецсимволов:

Кодировка UNICODE

Юникод (Unicode) — стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода».

В Unicode используются 16-битовые (2-байтовые) коды, что позволяет представить 65536 символов.

Применение стандарта Unicode позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.

Для представления символьных данных в кодировке Unicode используется символьный тип wchar_t .

ASCII UNICODE
char wchar_t
1 байт 2 байта

Тип кодировки задается в свойствах проекта Microsoft Visual Studio:
Кодировка Unicode
Кодировка Unicode
Многобайтовая кодировка предполагает использование кодировки ASCII.
При этом при построении проекта используется директива условной компиляции, переопределяющая тип TCHAR :

Для перекодирования строки в формат Unicode без изменения кодировки файла используется макроопределение
_T(«строка»)

Прототип макроса содержится в файле tchar.h .

Источник

Кодировка символов и Юникод: что нужно знать разработчику

Перевод статьи «What Every Developer Must Know About Encoding and Unicode».

Photo by Tomas Martinez on Unsplash

Если вы пишете международное приложение, в котором будут использоваться разные языки, вы должны разбираться в кодировке символов. Впрочем, эту статью стоит почитать, даже если вам просто любопытно, как слова выводятся на экран.

Я расскажу краткую историю кодировки символов (и о том, сколь мало она была стандартизирована), а затем чуть подробнее остановлюсь на том, чем мы пользуемся в настоящее время.

Введение в кодирование символов

Компьютер понимает только двоичный код. То есть только нули и единицы. Каждая из этих цифр — один бит. Восемь таких цифр (нулей и/или единиц) — один байт.

В конечном итоге все в компьютере сводится к двоичному коду: языки программирования, движения мыши, ввод текста и все слова на экране.

Но если весь текст, который вы читаете, тоже был в форме нулей и единиц, то как же произошло его превращение в понятные человеку слова? Чтобы в этом разобраться, давайте вернемся к истокам.

Краткая история кодировки

На заре интернета в нем все было исключительно на английском. Нам не приходилось беспокоиться о символах, которых в английском языке просто нет. Для сопоставления всех нужных символов с числовыми кодами использовалась таблица ASCII (American standard code for information interchange).

Получаемый компьютером двоичный код:

при помощи ASCII переводился в «Hello world».

Одного байта (8 бит) вполне хватало, чтобы уникально закодировать любой символ английского языка, а также некоторое количество управляющих символов. Часть этих управляющих символов использовалась для телетайпов, которые были довольно распространены в то время. Сейчас, впрочем, не используются ни телетайпы, ни эти символы.

Что из себя представляют управляющие символы? Например, управляющий символ с кодом 7 (111 в двоичной системе) служит для подачи компьютером звукового сигнала. Символ с кодом 8 (1000 в двоичной системе) перемещает позицию печати на один символ назад (например, для наложения одного символа на другой или для стирания предшествующего символа). Символ с кодом 12 (1100 в двоичной системе) отвечает за очистку экрана терминала.

В то время компьютеры использовали 8 бит для одного байта (хотя так было не всегда), так что проблем не было. Это позволяло закодировать все управляющие символы, все цифры и буквы английского алфавита, да еще и свободные коды оставались! Дело в том, что 1 байт может принимать 256 (0 — 255) разных значений. То есть потенциально можно было закодировать 255 символов, а в ASCII их было всего 127. Так что 128 кодов оставались неиспользованными.

Давайте посмотрим на саму таблицу ASCII. Все символы алфавита в верхнем и нижнем регистре, а также цифры получили двоичные коды. Первые 32 символа таблицы — управляющие, они не имеют графического отображения.

Таблица ASCII

Как видите, символы кончаются кодом 127. У нас осталось свободное место в таблице.

Проблемы с ASCII

При помощи кодов 128-255 можно было бы закодировать еще какие-нибудь символы. Люди задумались, какими именно символами лучше заполнить таблицу. Но у всех были разные идеи на этот счет.

Американский институт национальных стандартов (American national standards institute, ANSI) разметил, за какие символы должны отвечать коды 0-127 (т. е., те, которые уже были размечены ASCII). Но остальные коды остались открытыми.

Примечание: не путайте ANSI (институт) и ASCII (таблица).

Назначение кодов 0-127 никто не оспаривал. Проблема была в том, что делать с оставшимися.

В первых компьютерах IBM коды ASCII 128-255 представляли следующие символы:

Коды 128-255 для ASCII от IBM.

Но в других компьютерах было по-другому. И буквально каждый производитель стремился по-своему применить свободные коды из конца таблицы ASCII.

Эти разные варианты концовок таблицы ASCII назывались кодовыми страницами.

Что такое кодовые страницы ASCII?

Пройдя по ссылке, вы найдете коллекцию из более чем 465 различных кодовых страниц! Как видите, даже для одного языка существовали разные кодовые страницы. Например, для греческого и китайского есть по нескольку кодовых страниц.

Но как же, черт побери, все это стандартизировать? Как работать с несколькими языками? А с одним языком, но разными кодовыми страницами? А с не-английским языком?

В китайском языке больше 100 тысяч различных символов. Даже если бы мы договорились отдать под символы китайского языка все оставшиеся коды, их бы все равно не хватило.

Выглядело все это довольно плохо. Для этой проблемы даже придумали отдельный термин: mojibake (на японском это слово означает «трансформация символа»).

Это неправильно декодированный текст, в котором символы систематически заменяются другими, причем часто — даже из других систем письменности.

Пример mojibake

С ума сойти…

Вот именно! У нас не было ни единого шанса надежно обмениваться данными.

Интернет — всего лишь огромная сеть компьютеров по всему миру. Представьте, что было бы, если бы каждая страна самостоятельно определяла стандарты кодировки. Тогда компьютеры в Греции нормально выводили бы только греческий язык, а в США — только английский.

ASCII не подходила для использования в реальном мире. Чтобы интернет был всемирным, нам нужно было что-то менять. Ну, или вечно работать с сотнями кодовых страниц.

���Если только вам������, конечно, не ���нравится ��� расшифровывать такие абзацы.�֎֏0590֐��׀ׁׂ׃ׅׄ׆ׇ

И тут пришел Юникод

Юникод (Unicode) иногда называют UCS — универсальным набором символов (Universal Coded Character Set), и даже ISO/IEC 10646. Но Юникод — наиболее распространенное название.

Юникод состоит из множества кодовых пунктов (code points, по сути — шестнадцатеричные числа), связанных с символами. Коллекция кодовых пунктов называется набором символов. Вот этот набор — и есть Юникод.

Люди проделали огромную работу, назначив коды всем символам всех языков, а мы можем просто пользоваться результатами их труда. Отображение кодов выглядит так:

U+ указывает на то, что это стандарт Unicode, а номер — число, в которое переведен двоичный код для данного символа. В Юникоде используется шестнадцатеричная система — просто потому, что в нее проще переводить двоичный код. Впрочем, вам не придется делать это вручную, так что можно не волноваться.

Вот ссылка на ресурс, где вы можете впечатать в форму любой символ и получить его кодировку в Юникод. Или же можете просмотреть все 143859 символов здесь. В таблице можно увидеть, из какой части света происходит каждый символ!

Просто для ясности подобью итоги. В настоящее время у нас есть большой словарь кодовых пунктов с отображением на символы. Это очень большое множество символов. Н

Наконец, переходим к последнему ингредиенту.

Unicode Transform Format (UTF)

UTF («Формат преобразования Юникода») — это способ представления Юникод. Кодировки UTF определены стандартом Юникод и позволяют закодировать любой нужный нам кодовый пункт Юникод.

Есть несколько разных видов UTF-стандартов. Они отличаются количеством байтов, используемых для кодирования одного кодового пункта. В UTF-8 используется один байт на кодовый пункт, в UTF-16 — 2 байта, в UTF-32 — 4 байта.

Поскольку кодировок так много, как понять, какую использовать? Есть такая вещь как маркер последовательности байтов (англ. Byte order mark, BOM) Это двубайтный маркер в начале файла, который говорит о том, какая кодировка используется в этом файле.

UTF-8 — самая распространенная кодировка в интернете. В HTML5 она определена как предпочтительная для новых документов. Поэтому я уделю ей особое внимание.

Даже по диаграмме 2012 года видно, что UTF-8 становится самой распространенной кодировкой.
Диаграмма от W3 показывает, насколько интенсивно используется UTF-8 на сайтах

Что такое кодировка UTF-8 и как она работает?

UTF-8 кодирует кодовые пункты Юникод 0-127 в одном байте (т. е. так же, как в ASCII). Это значит, что если вы для своей программы использовали кодировку ASCII, а ваши пользователи используют UTF-8, они не заметят никакой разницы. Все будет нормально работать.

Просто обратите внимание, насколько это классно. Нам нужно было начать внедрять и повсеместно использовать UTF-8 и при этом сохранить обратную совместимость с ASCII. Это удалось сделать, UTF-8 ничего не ломает.

В названии кодировки заложено указание на количество бит (8 бит = 1 байт), которые используются для одного кодового пункта. Но есть символы Юникод, для хранения которых требуется по нескольку байтов (раньше было до 6, теперь — до 4, в зависимости от символа). Именно это имеется в виду, когда говорят, что UTF-8 — кодировка переменной длины (см. UTF-32, — прим. ред.).

Тут все зависит от языка. Символ английского алфавита — 1 байт. Европейская латиница, иврит, арабские символы представляются 2 байтами. Для китайских, японских, корейских символов и символов других азиатских языков используются 3 байта.

Чтобы символ мог занимать больше одного байта, есть битовая комбинация, идентифицирующая знак продолжения. Она сообщает о том, что этот символ продолжается в нескольких последующих байтах. Таким образом, для английского языка вы по-прежнему будете использовать по одному байту на символ, но сможете составить и документ, содержащий символы на других языках.

Радостно сознавать, что теперь у нас полное согласие по части того, как кодировать шумерскую клинопись, а также смайлики!

Если описать весь процесс в общих чертах, то:

  1. сначала вы читаете BOM, чтобы узнать кодировку,
  2. затем расшифровываете файл в кодовые пункты Юникод,
  3. затем представляете символы из набора Юникод в символы, которые отрисовываются на экране.

Еще немного о UTF

Помните, что кодировка это ключ. Если я пошлю совершенно неправильную кодировку, вы не сможете ничего прочесть. Имейте это в виду, отсылая или получая данные. Зачастую в постоянно используемых нами инструментах это абстрагировано, но программист должен понимать, что происходит под капотом.

Как мы указываем кодировку? Поскольку HTML написан на английском и практически все кодировки прекрасно справляются с английскими символами, мы можем указать кодировку прямо сверху, в разделе .

Это важно сделать в самом начале , потому что если будет использована не та кодировка, парсинг HTML может начаться заново.

Мы также можем получить кодировку из заголовка Content-Type в HTTP-запросе или ответе.

В спецификации HTML5 есть любопытный способ угадать кодировку, если HTML-документ не содержит соответствующего тега, — BOM sniffing («вынюхивание BOM»). В этом случае кодировка определяется по маркеру последовательности байтов, который мы упоминали ранее.

Это все?

Работа над Юникодом продолжается. Как в любом стандарте, мы можем что-то добавлять, удалять, вносить предложения. Никакая спецификация никогда не считается окончательно завершенной.

Обычно бывает 1-2 релиза Юникода в год, найти их можно здесь.

Недавно мне попалась статья об очень интересном баге: Twitter неверно рендерил русские символы Юникода.

Если вы дочитали до сюда, — снимаю шляпу. Я знаю, информации много.

Советую также выполнить «домашнее задание».

Посмотрите, как могут ломаться сайты из-за неправильной кодировки. Я использовал вот это расширение Google Chrome для смены кодировки и пробовал читать разные страницы. Текст был совершенно непонятен. Попробуйте прочесть эту статью, например. Зайдите на Википедию. Посмотрите на Mojibake своими глазами.

Это поможет вам проникнуться важностью кодировок.

Окно выбора кодировки

Заключение

Название этой статьи — дань уважения статье Джоела Спольски, которая познакомила меня с кодировкой и многими концепциями, о которых я и не подозревал. Именно после прочтения этой статьи я углубился в тему кодировки. Также я очень многое почерпнул из этого источника.

Изучая информацию и пытаясь упростить свою статью, я узнал о Майкле Эверсоне. С 1993 года он предложил больше 200 изменений в Юникод и добавил в стандарт тысячи символов. В 2003 году он был одним из ведущих контрибьюторов предложений в Юникод. Своим современным видом Юникод (а значит, и вообще интернет) во многом обязан именно Майклу Эверсону.

Надеюсь, у меня получилось сделать хороший обзор того, зачем нам нужны кодировки, какие проблемы они решают и что случается, если с кодировкой происходит сбой.

Источник

Урок 12 Представление нечисловой информации в компьютере

Представление текстовой информации в компьютере

Изучив эту тему, вы узнаете и повторите:

— как в компьютере представляется текстовая информация;
— что такое ASCII и Unicode;
— как в компьютере представляется графическая информация;
— какие форматы используются при хранении графических файлов;
— как в компьютере представляется звуковая информация;
— какие форматы используются при хранении звуковых файлов.

Компьютеры не с самого рождения могли обрабатывать символьную информацию. Лишь с конца 60-х годов они стали использоваться для обработки текстов и в настоящее время большинство пользователей ПК занимаются вводом, редактированием и форматированием текстовой информации.

1. Таблица кодирования ASCII.

А теперь «заглянем» в память компьютера и разберемся, как же представлена в нем текстовая информация.

Текстовая информация состоит из символов: букв, цифр, знаков препинания, скобок и других. Мы уже говорили, что множество всех символов, с помощью которых записывается текст, называется алфавитом, а число символов в алфавите — его мощностью.

Для представления текстовой информации в компьютере используется алфавит мощностью 256 символов. Мы знаем, что один символ такого алфавита несет 8 битов информации: 2 в 8 степени равно 256. 8 битов = 1 байт, следовательно:

Один символ в компьютерном тексте занимает 1 байт памяти.

Как мы выяснили, традиционно для кодирования одного символа используется 8 бит. И, когда люди определились с количеством бит, им осталось договориться о том, каким кодом кодировать тот или иной символ, чтобы не получилось путаницы, т.е. необходимо было выработать стандарт – все коды символов сохранить в специальной таблице кодов. В первые годы развития вычислительной техники таких стандартов не существовало, а сейчас наоборот, их стало очень много, но они противоречивы. Первыми решили эти проблемы в США, в институте стандартизации. Этот институт ввел в действие таблицу кодов ASCII (AmericanStandardCodeforInformationInterchange – стандартный код информационного обмена США).

Рассмотрим таблицу кодов ASCII.

Пояснение: раздать учащимся распечатанную таблицу кодов ASCII.

Таблица ASCII разделена на две части. Первая – стандартная – содержит коды от 0 до 127. Вторая – расширенная – содержит символы с кодами от 128 до 255.

Первые 32 кода отданы производителям аппаратных средств и называются они управляющие, т.к. эти коды управляют выводом данных. Им не соответствуют никакие символы.

Коды с 32 по 127 соответствуют символам английского алфавита, знакам препинания, цифрам, арифметическим действиям и некоторым вспомогательным символам.

Коды расширенной части таблицы ASCII отданы под символы национальных алфавитов, символы псевдографики и научные символы.

Стандартная часть таблицы кодов ASCII

Если вы внимательно посмотрите на обе части таблицы, то увидите, что все буквы расположены в них по алфавиту, а цифры – по возрастанию. Этот принцип последовательного кодирования позволяет определить код символа, не заглядывая в таблицу.

Коды цифр берутся из этой таблицы только при вводе и выводе и если они используются в тексте. Если же они участвуют в вычислениях, то переводятся в двоичную систему счисления.

Коды национального (русского) алфавита расширенной частитаблицы ASCII

Альтернативные системы кодирования кириллицы.

Тексты, созданные в одной кодировке, не будут правильно отображаться в другой.В настоящее время для поддержки букв русского алфавита (кириллицы) существует несколько кодовых таблиц (кодировок), которые используются различными операционными системами, что является существенным недостатком и в ряде случаев при-водит к проблемам, связанным с операциями декодирования числовых значений символов.

Для разных типов ЭВМ используются различные кодировки:

В настоящее время существует 5 кодовых таблиц для русских букв: Windows (СР(кодовая страница)1251), MS – DOS (СР(кодовая страница)866), KOИ – 8 (Код обмена информацией, 8-битный) (используется в OS UNIX), Mac (Macintosh), ISO (OS UNIX).

Одним из первых стандартов кодирования кириллицы на компьютерах был стан-дарт КОИ-8.

Национальная часть кодовой таблицы стандарта КОИ8-Р

В настоящее время применяется и кодовая таблица, размещенная на странице СР866 стандарта кодирования текстовой информации, которая используется в операционной системе MS DOS или сеансе работы MS DOS для кодирования кириллицы.

Национальная часть кодовой таблицы СР866

Источник

Adblock
detector