Меню

Предельное напряжение растяжения грунта таблица



Прочность грунтов

Закон Кулона для связных и несвязных грунтов

Грунты оснований зданий и сооружений испытывают воздействие не только нормальных, но и касательных напряжений. Когда касательные напряжения по какой-либо поверхности в грунте достигают его предельного сопротивления, то происходит сдвиг одной части массива грунта по другой.

Сопротивление грунта сдвигу характеризуется прочностными свойствами грунта и используется в расчетах оснований по первому предельному состоянию (по прочности).

Прочностью грунта называют способность его воспринимать силы внешнего воздействия не разрушаясь. Разрушение грунта, служащего основанием сооружения, слагающего берег (склон) водохранилища или же откос канала, происходит в виде перемещения-сдвига одной его части относительно другой тогда, когда силы внешнего воздействия превысят силы внутреннего сопротивления. Прочность грунта определяется его сопротивляемостью сдвигу и оценивается показателем, который называется предельным сопротивлением сдвигу τ .

В лабораторных условиях сопротивление грунта сдвигу устанавливается испытанием его образцов на прямой сдвиг (срез) в сдвиговых приборах и приборах трехосного сжатия, в полевых — путем испытания крыльчаткой, методами раздавливания призмы грунта, сдвигом целика грунта в заданной плоскости и другими способами. На рис. 5.11 показан общий вид установки для испытания грунтов на одноплоскостной сдвиг.

Рис. 5.11. Общий вид прибора для испытания грунта на сдвиг

Сопротивление сдвигу песчаных и крупнообломочных фунтов возникает в основном в результате трения между перемещающимися частицами и зацепления их друг за друга. В этих грунтах сопротивление растяжению практически отсутствует, поэтому их называют сыпучими, или несвязны ми. Тогда сопротивление сдвигу в несвязных (сыпучих) грунтах зависит от сил трения между частицами.

Процесс разрушения глинистых грунтов значительно сложнее, чем песчаных или крупнообломочных. Водно-коллоидные и цементационные связи, которые имеют место в глинистых грунтах, обеспечивают некоторое сопротивление их растяжению.

Поэтому эти фунты часто называют связными. Тогда сопротивление сдвигу в связных фунтах складывается из сил трения частиц и сил сцепления между ними.
Сцепление — это сопротивление структурных связей глинистых грунтов всякому перемещению частиц.

Испытание глинистых грунтов на сдвиг производится по двум схемам:

  • I схема — закрытая (неконсолидированно-недренированные испытания), т.е. когда фунт не консолидирован. Испытания производятся сразу после приложения вертикальной нагрузки, при этом плотность и влажность грунта в процессе опыта не меняются. Такие опыты носят название «быстрого сдвига».
  • II схема — открытая (консолидированно-дренированная), т.е. когда грунт консолидирован. В этом случае испытания на сдвиг производятся после полной консолидации. Консолидация — процесс уплотнения грунта, сопровождающийся отжатием воды из пор грунта, т.е. это явление свойственно водонасыщенным грунтам.
    Как было сказано выше, сопротивление грунтов сдвигу можно определить с помощью различных приборов. Наиболее простым из них является одноплоскостной сдвиговой ( рис. 5.12 ).

Рис. 5.12. Схема прибора для испытания фунта на сдвиг: 1 — неподвижная обойма; 2 — то же, подвижная; 3 — фильтрующая пластина с зубцами

Если образец грунта поместить в сдвиговой прибор (в виде двух компрессионных колец), то приложив вертикальную силу F и постепенно увеличивая горизонтальную силу Т, происходит срез (сдвиг) одной части образца относительно другой по линии, показанной пунктиром (см. рис. 5.12).

Опыты на сдвиг проводят при нескольких сжимающих напряжениях (о) для образцов грунта, находящихся в одинаковом состоянии и результаты оформляют в виде графиков ( рис. 5.13 ). При этом, чем больше а, тем больше предельное сопротивление сдвигу τ и .

Под действием возникающих в плоскости среза касательных напряжений τ=Т/А развиваются горизонтальные перемещения верхней части образца а ( см. рис. 5.13 ). По мере увеличения интенсивность горизонтальных перемещений а возрастает, и при некотором предельном значении τ = τ и дальнейшее перемещение части образца происходит без увеличения сдвигающего напряжения. Это свидетельствует о разрушении образца грунта.

Рис. 5.13. Кривые горизонтальных смещений части образца при различных значениях нормальных напряжений (а) и график сопротивления сдвигу образца песчаного грунта (б)

Многочисленными экспериментами различных авторов установлено, что график зависимости сопротивления сдвигу от нормального напряжения для песчаных и крупнообломочных грунтов с достаточной точностью может быть представлен отрезком прямой, выходящей из начала координат ( см. рис. 5.13, б ). Тогда эта зависимость может быть выражена уравнением

где tgφ — коэффициент внутреннего трения, характеризующий трение грунта о грунт, tgφ = ƒ; φ — угол внутреннего трения.

Зависимость (5.27) установлена французским ученым Ш. Кулоном еще в 1773 г. и формулируется следующим образом: предельное сопротивление сыпучих грунтов сдвигу прямо пропорционально нормальному напряжению. Этот закон называется законом Кулона для несвязных фунтов.

Как известно, глинистые фунты (супесь, суглинок, глина) обладают связностью, интенсивность которой зависит от влажности и степени уплотненности грунта.
Испытание глинистых грунтов производится в таких же приборах, что и несвязных грунтов (см. рис. 5.12), только фильтрующая пластина — без зубцов.
Так же проводятся несколько испытаний и строится график (рис. 5.14). Тогда зависимость τ = ƒ (σ) для связных грунтов может быть представлена следующим образом:

где с — отрезок, отсекаемый от оси τ и прямой АВ ( рис. 5.14 ), называется удельным сцеплением и характеризует связность грунта.

Параметры φ и с лишь условно можно назвать углом внутреннего трения и удельным сцеплением, так как физика процесса разрушения грунта намного сложнее.

Рис. 5.14. График сопротивления сдвигу образцов глинистого грунта

На полученные величины параметров сопротивления грунта сдвигу (φ и с) оказывает влияние методика проведения опытов ( табл. 5.3 ).
Уравнение (5.28) называют законом Кулона для связных грунтов и формулируют следующим образом: предельное сопротивление связных грунтов сдвигу при завершении их консолидации есть функция первой степени нормального напряжения.

Таблица 5.3. Прочностные показатели глинистых грунтов, определяемые различными методиками

Схема испытания Значения параметров
φ, град с, МПа
Мгновенный сдвиг без предварительного уплотнения 6 0,02
Быстрый сдвиг без предварительного уплотнения 5 0,027
Медленный сдвиг с предварительным уплотнением под нагрузками среза 20 0,003

Исследования, проведенные во ВНИИГ им. Б.Е. Веденеева, показывают, что метод определения сопротивления сдвигу оказывает довольно существенное влияние на конечные результаты.

Так, φ и с определенные в полевых условиях по результатам сдвига жестких бетонных штампов, довольно существенно отличаются от результатов, полученных на приборе одноплоскостного среза для грунтов с ненарушенной структурой ( табл. 5.4 ).

Таблица 5.4. Характеристики грунтов, полученные различными испытаниями (по П.Д. Евдокимову, 1966)

Вид грунта Метод испытаний
Бетонный штамп Бетонный штамп Бетонный штамп Бетонный штамп Одометр Стабилометр
φ, град. с, Н/см2 φ, град. с, Н/см2 φ, град. с, Н/см2
Мелкий песок 25-30 0,6 34 0,6 42
Плотные суглинки, супеси 22-45 6,3 27-35 0,6 33 15
Глина 14-16 3,8-5,2 17 0,92
Плотная глина 28 1,6 34 20,7

Применявшиеся бетонные штампы размером от 1,5×1,0 до 2,5×2,5 м позволили интегрирование учесть свойства грунта большого объема, в то время как испытания в лабораторных условиях на образцах объемом в несколько кубических сантиметров дают возможность определить лишь свойства грунта в той точке, в которой взята проба.
Таким образом, для расчета оснований зданий и сооружений необходимо определить вышеуказанные прочностные характеристики грунта, а именно: угол внутреннего трения и удельное сцепление грунта.

Для расчетов оснований зданий и сооружений II и III классов можно использовать нормативные значения прочностных и деформационных характеристик, приведенных в СНиП 2.02.01—83*.

Источник

Условия предельного напряженного состояния грунта

Основные формы условия предельного равновесия Кулона—Мора. При определенных напряжениях в грунте может возникнуть предельное напряженное состояние. В этом случае малое увеличение (формально бесконечно малое) действующих сил приводит к разрушению грунта, потере устойчивости, образованию необратимых сдвигов по возникающим при этом поверхностям скольжения. Таким образом, предельное напряженное состояние, или предельное равно-

весне, — это условие начала еще не возникших деформаций разрушения грунта, условие прочности или условие пластичности. Для грунтов все эти термины обычно применяют как синонимы.

В качестве основного условия предельного состояния, предельного равновесия или условия прочности для грунтов наиболее широко применяют условие, сформулированное еще в 1773 г. Ш. Кулоном, по которому на площадках возможного начала скольжения касательные напряжения (т) связаны с нормальными напряжениями (а) зависимостью

где ф и с, как уже отмечалось ранее в § 1.5, — параметры линейной

зависимости, традиционно условно называемые углом внутреннего трения и сцеплением (см. рис. 1.38).

Зависимость Кулона (2.32), предложенная им для грунтов, является частным случаем появившейся позднее теории прочности Мора, который принял, что сопротивление сдвигу по какой-либо площадке является функцией нормального напряжения, т. е.

Следует отметить, что иногда для характеристики напряженного состояния грунта, в противовес предельному, вводят понятие о допредельном состоянии грунта, условием которого, естественно, является х С гг1§ф + с. Обратный знак неравенства не может иметь места, так как уже в случае знака равенства прочность грунта нарушается .

Для дальнейшего процесса развития разрушения грунта и больших пластических деформаций иногда вводится также термин запредельное состояние.

Условие (2.32) можно представить в различных формах, удобных для его использования.

В некоторых случаях удобно представить условие предельного равновесия в форме

где стс — напряжение всестороннего сжатия, эквивалентное связанности (фиктивная величина).

По какой-либо площадке в грунтовой среде (рис. 2.11) в общем случае действуют касательные и нормальные напряжения, а также нормальные фиктивные напряжения стс. Равнодействующая этих напряжений, называемая полным приведенным напряжением, будет отклоняться от нормали к площадке на угол б. При повороте площадки этот угол будет меняться в пределах от 0гаах До 0 (по главным площадкам) и величина Отах будет

Сопоставляя (2.35) с (2.34), можно прийти к выводу, что состояние предельного равновесия будет достигнуто в данной точке среды при условии.

Таким образом, состояние предельного равновесия наступает тогда, когда максимальный угол отклонения полного приведенного напряжения от нормали к площадке становится равным углу внутреннего трения.

[image]

Для того чтобы получить еще одну форму условия предельного равновесия, рассмотрим круг напряжений Мора (диаграмму Мора) для какого-либо элемента грунтовой связной среды. В условиях плоской задачи напряженное состояние описывается кругом (рис. 2.12), построенным на разности главных напряжений ф или, что то же самое, т>тПР, что физически невозможно.

[image]

Из рис. 2.12 легко заметить, что

^тах п , , , ч / 0 с + 0 з+( а 1 — °з)/2 [image]

а так как в предельном состоянии из (2.36) 0тах = ф> то условие предельного напряженного состояния (2.32) через главные напряжения приобретает форму

°х — °з = (°1 + °з + 2о с) 5 *п (2.38, IV)

Рис. 2.14. Взаимное расположение главных площадок и площадок скольжения в элементе грунтовой среды

Точка касания А предельной прямой к кругу напряжений, т. е. в случае 6тах = ф, определяет в данной точке земляной среды наклон

[image]

Рис. 2.13. Круги напряжений для различных элементов грунтовой среды

площадки скольжения —сдвига к главной площадке. Тогда из рис. 2.12, учитывая, что треугольник О’АС прямоугольный, получим 180° —

    [image]

2а = 180° — (90° + ф) или наклон площадки скольжения к главной площадке (рис. 2.14) будег

а =45°+ .ср/2. (2.39, V) [image]

Учитывая, что главные площадки взаимно перпендикулярны, наклон площадки скольжения ко второй главной площадке (рис. 2.19) равен

Кроме того, из условия симметрии круга Мора и наличия двух предельных прямых с точками касания А и А’ (рис. 2.12) в каждом элементе грунтовой среды, находящимся в предельном напряженном состоянии, будет две площадки скольжения (рис. 2.14). Между собой площадки скольжения, как показано на рис. 2.14, пересекаются под углами

Главные напряжения, как известно, выражаются через компоненты напряжений зависимостями

[image]

90° — ср и 90° + ср. (2.41, V)

[image]

Тогда условие предельного равновесия (2.38, IV) через компоненты напряжений приобретает форму

[image]

Рис. 2.15. Круги напряжений для случая пространственной задачи

Ниже будет получен еще ряд форм условия предельного равновесия. Следует подчеркнуть, что все они являются только различными формами условия Кулона (2.32, 1)и по существу выражают одно и то же физическое условие прочности грунта. Каждое из этих уравнений равноценно и используется только в зависимости от удобства решения конкретной задачи.

Для пространственной задачи, т. е. при наличии оь ст2 и сг3, напряженное состояние в любой точке среды определяется тремя кругами напряжений (рис. 2.15). Учитывая, что предельная прямая под углом ф не может пересекать какой- либо круг напряжений, то, как можно заметить из рис. 2.15, условие предельного равновесия определяется касательной к кругу, построенному на наибольшем (о^)

и наименьшем (о3) главных напряжениях, т. е. условием (2.38).

Таким образом, можно сделать существенный вывод, что величина промежуточного главного напряжения (о2) никак не отражается на условии предельного равновесия — условии прочности Кулона —

Мора, т. е. как бы внутри большего круга напряжений (рис. 2.15)

не изменялись два остальных круга, прочность элемента среды формально остается неизменной. В действительности, как показывают эксперименты, промежуточное, главное напряжение может в ряде случаев влиять на прочность в основном плотных, песчаных и более крупнозернистых грунтов.

Для того чтобы оценить весь возможный диапазон изменения главных напряжений, рассмотрим элемент грунта, ограниченный глав

[image]

Предельные соотношения между главными напряжениями, ношение между главными напряжениями о3) дельном состоянии определится условием (2.38) как

1 + 51П у . о 5Ш у 1 + 51П ст»), так и при его уменьшении (з’ 2 (45 + ф/2) + 2с1§(45 + Ф/2) или

[image] [image]

[image]

Если о’ > ст», то ст’ == а1, а о» = ст3 и тогда из (2.45) следует

а’ 2 (45° + ?/2) + 2с (45° + ср/2). (2.46)

= а» 1§ 2 (45° — Ф/2) — 2с *§ (45° — ф/2). (2.47)

Таким образом, выражения (2.46) и (2.47) определяют пределы возможного изменения одного главного напряжения ст’ по сравнению с другим известным главным напряжением о». Знаки неравенства в выражениях (2.46) и (2.47) свидетельствуют, что в рассматриваемой точке грунтовой среды нет состояния предельного равновесия. В любом случае получение знака равенства является признаком перехода грунта в предельное напряженное состояние. Других знаков неравенства в (2.46) и (2.47) физически быть не может.

В результате для случая ст’ 3 (45° — ф/2) — 2с 1&(45 э — ,ф/2) (2.48, VII)

[image]

и такое предельное состояние называют активным, а при о’ > о» приобретает вид

[image]

а’ = о» (45° + Ф/2) + 2с (45° + ф/2), (2.49, VIII)

называемый пассивным предельным состоянием.

Зависимости (2.48), (2.49) широко применяют в инженерной практике, в частности, при определении активного и пассивного давления грунта на сооружение (см. гл. 6).

[image]

В частном случае одноосного сжатия элемента грунта (т. е. при ст» = 0), что соответствует ст’ > ст», предельное сопротивление сжатию

Рис. 2.16. Элемент’гр-ун- та по главным площад-

При одноосном растяжении (также ст» = 0), считая растягивающие напряжения отрицательными и, следовательно, в случае ст’ ■ т окт 3 0КТ Фокт + ^окт (2-54)

[image] [image]

«окт = “ К+ «/+ °з) = 0 = °СР» (2-52)

[image]

К — 02) 2 + ( 3 2 — °з) 2 + ( 3 3 — «I) 2 = ( 3 ! -Г 3 2 + 33) Фокт — Зсокт,

где фокт и сокт — параметры прочности грунта (расчетные характеристики прочности) в модели Боткина.

Таким образом, условие прочности Мизеса—Боткина в отличие от условия Кулона—Мора учитывает все три главных напряжения.

Для характеристики пространственного напряженного состояния (вида напряженного состояния) удобно ввести параметр Лодэ—|а, (параметр вида напряженного состояния). В качестве этого параметра принимается отношение двух отрезков ОС и ВС — радиус большого круга на диаграмме пространственных кругов Мора (см. рис. 2.15), т. е.

[image]

Как можно заметить, параметр |л=, изменяется от —1 при сг2 = до + 1 при 02 = С4. Следует отметить, что (х, = —1 соответствует случаю испытания на приборах трехосного сжатия (стабилометрах). Очевидно, при одном и том же значении [л, диаграммы Мора, построенные для разных точек среды, будут подобны, т. е. будет подобным их напряженное состояние.

Аналогичным образом записывается параметр [х6 вида деформированного состояния

где еь е3 — главные деформации, т. е. деформации по направлениям действия главных напряжений.

Таким образом, параметры |л3 и \х, характеризуют вид напряженного и деформированного состояний и позволяют классифицировать эти состояния.

Роль учета промежуточного главного напряжения ст2, следовательно применимость различных условий прочности к грунтам, может быть оценена только по данным экспериментов. Для этого необходимо использовать приборы, позволяющие в большом диапазоне менять параметр Лодэ. В основном, это установки с независимо изменяющимися тремя главными напряжениями (см. рис. 1.17), приборы с кручением трубчатых образцов грунта (см. рис. 1.19, в) и с меньшими возможностями обычные стабилометры.

В последние годы в этом направлении появились очень немногочисленные экспериментальные данные. Для песчаных грунтов получены изменения величины ф, например, от 35° при р,3 = —1 до 48° (|д.3 = 0) и 44° при [х, = +1, другими исследователями меньшие изменения, например, от 39° (ц, = —1) до 42° (^ = 0) и 39° ((г, = = +1), а для ф = 21° при = —1 всего до 23° при ц, = 0 и др. Результаты опытов, хотя и противоречивы, но показывают тенденцию существенного уменьшения влияния з2 при уменьшении величины угла внутреннего трения ср.

Источник

ГОСТ 12248-96: «Грунты. Методы лабораторного определения характеристик прочности и деформируемости»

(введен постановлением Минстроя РФ от 1 августа 1996 г. N 18-56)

Межгосударственный стандарт ГОСТ 12248-96
«Грунты. Методы лабораторного определения
характеристик прочности и деформируемости»
(введен постановлением Минстроя РФ от 1 августа 1996 г. N 18-56)

Soils. Laboratory methods for determining the strength and strain

Введен взамен ГОСТ 12248-78, ГОСТ 17245-79, ГОСТ 23908-79,

ГОСТ 24586-90, ГОСТ 25585-83, ГОСТ 26518-85

Дата введения 1 января 1997 г.

грунта методом одноплоскостного среза

методом трехосного сжатия

грунта методом трехосного сжатия

грунта методом компресионного сжатия

засоленного грунта при сжатии

в компрессионно-фильтрационном приборе

грунта шариковым штампом

грунта методом одноплоскостного среза по поверхности

для испытания методом одноплоскостного среза

по поверхности смерзания

грунта методом одноплоскостного среза по поверхности

грунта методом одноосного сжатия

мерзлого грунта методом одноосного сжатия

по результатам испытания методом одноосного сжатия

грунта методом компрессионного сжатия

1. Область применения

Настоящий стандарт устанавливает методы лабораторного определения характеристик прочности и деформируемости грунтов при их исследовании для строительства.

2. Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 9378-93 Образцы шероховатости поверхности (сравнения). Общие технические условия

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава

ГОСТ 23161-78 Грунты. Методы лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 25584-90 Грунты. Методы лабораторного определения коэффициента фильтрации

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения.

В настоящем стандарте применяют следующие термины.

Эффективное напряжение — напряжение, действующее в скелете грунта, определяемое как разность между полным напряжением в образце грунта и давлением в поровой жидкости.

Коэффициент фильтрационной c_ипсилон и вторичной c_альфа консолидации — показатели, характеризующие скорость деформации грунта при постоянном давлении за счет фильтрации воды (c_ипсилон) и ползучести грунта (c_альфа).

Ползучесть — развитие деформаций грунта во времени при неизменном напряжении.

Стадия незатухающей ползучести — процесс деформирования грунта с постоянной или увеличивающейся скоростью при неизменном напряжении.

Остальные термины, используемые в настоящем стандарте, приведены в ГОСТ 30416.

4. Общие положения

4.1 Настоящий стандарт устанавливает следующие методы лабораторного определения характеристик прочности и деформируемости грунтов:

— одноплоскостного среза, одноосного сжатия, трехосного сжатия, компрессионного сжатия — для немерзлых грунтов;

— испытание шариковым штампом, одноплоскостного среза по поверхности смерзания, одноосного сжатия, компрессионного сжатия — для мерзлых грунтов.

Примечание — По специальному заданию могут применяться другие методы испытаний и конструкции приборов, обеспечивающие моделирование процесса нагружения грунта.

4.2 Общие требования к лабораторным испытаниям грунтов, оборудованию и приборам, лабораторным помещениям, способы изготовления образцов для испытаний приведены в ГОСТ 30416.

4.3 Для испытываемых грунтов должны быть определены физические характеристики по ГОСТ 5180: влажность (суммарная влажность для мерзлых грунтов), плотность, плотность частиц, влажность границ текучести и раскатывания, гранулометрический состав песков, а в необходимых случаях и глинистых грунтов по ГОСТ 12536, а также вычислены плотность сухого грунта, коэффициент пористости, коэффициент водонасыщения (степень заполнения объема пор льдом и незамерзшей водой), число пластичности и показатель текучести (для немерзлых грунтов).

Дополнительные необходимые характеристики грунтов приводятся в отдельных методах испытаний.

4.4 В процессе испытаний грунтов ведут журналы по формам, приведенным в приложении А.

5. Методы определения характеристик прочности
и деформируемости немерзлых грунтов

5.1. Метод одноплоскостного среза

5.1.1 Сущность метода

5.1.1.1 Испытание грунта методом одноплоскостного среза проводят для определения следующих характеристик прочности: сопротивления грунта срезу тау; угла внутреннего трения фи; удельного сцепления с для песков (кроме гравелистых и крупных), глинистых и органо-минеральных грунтов.

5.1.1.2 Эти характеристики определяют по результатам испытаний образцов грунта в одноплоскостных срезных приборах с фиксированной плоскостью среза путем сдвига одной части образца относительно другой его части касательной нагрузкой при одновременном нагружении образца нагрузкой, нормальной к плоскости среза.

Для глинистых грунтов по специальному заданию может быть проведен повторный срез образца по фиксированной плоскости — срез «плашка по плашке».

Примечание — Не допускается испытывать грунты, выдавливаемые в процессе испытания в зазор между подвижной и неподвижной частями срезной коробки.

5.1.1.3 Сопротивление грунта срезу определяют как предельное среднее касательное напряжение, при котором образец грунта срезается по фиксированной плоскости при заданном нормальном напряжении. Для определения с и фи необходимо провести не менее трех испытаний при различных значениях нормального напряжения.

5.1.1.4 Испытания проводят по следующим схемам:

— консолидированно-дренированное испытание — для песков и глинистых грунтов независимо от их степени влажности в стабилизированном состоянии;

— неконсолидированно-недренированное испытание — для водонасыщенных глинистых и органо-минеральных грунтов в нестабилизированном состоянии и просадочных грунтов, приведенных в водонасыщенное состояние замачиванием без приложения нагрузки.

5.1.1.5 Для испытаний используют образцы грунта ненарушенного сложения с природной влажностью или в водонасыщенном состоянии или образцы нарушенного сложения с заданными значениями плотности и влажности (в том числе при полном водонасыщении), или образцы, отобранные из уплотненного массива, для искусственно уплотненных грунтов.

При этом образцы просадочных грунтов испытывают в водонасыщенном состоянии, а набухающих — при природной влажности.

Примечание — В необходимых случаях сопротивление срезу может определяться: для просадочного грунта при природной влажности или при влажности на границе раскатывания, если последняя превышает природную; для засоленного — на образцах предварительно выщелоченного грунта после стабилизации суффозионной осадки при заданном нормальном давлении; для набухающих грунтов — в условиях полного водонасыщения после стабилизации свободного набухания или набухания (уплотнения) при заданном нормальном давлении; для насыпных грунтов — при их максимальной, требуемой или достигаемой плотности.

5.1.1.6 Образцы должны иметь форму цилиндра диаметром не менее 70 мм и высотой от 1/3 до 1/2 диаметра.

Примечание — Для однородных глинистых грунтов (без включений) допускается при испытаниях в полевых лабораториях уменьшать диаметр образца до 56 мм.

5.1.2. Оборудование и приборы

5.1.2.1 В состав установки для испытания грунта методом одноплоскостного среза должны входить:

— срезная коробка, состоящая из подвижной и неподвижной частей и включающая рабочее кольцо с внутренними размерами по 5.1.1.6, жестких сплошного и перфорированного штампов;

— механизм для вертикального нагружения образца;

— механизм создания касательной нагрузки;

— устройства для измерения деформаций образца и прикладываемой нагрузки.

Примечание — Для испытания образца песчаных грунтов применяют срезную коробку с нижней подвижной частью.

5.1.2.2 Конструкция срезного прибора должна обеспечивать первоначальное вертикальное давление на образец (от веса штампа и измерительных приборов на нем) не более 0,025 МПа.

5.1.2.3 При тарировке срезной коробки в соответствии с паспортом на прибор устанавливают поправки на преодоление трения подвижной части срезной коробки.

5.1.2.4 При необходимости предварительного уплотнения образца могут применяться уплотнители, позволяющие производить уплотнение при заданном давлении и сохранении природной или заданной влажности, а также в условиях полного водонасыщения.

В состав уплотнителя должны входить следующие основные узлы:

— цилиндрическая обойма, в которую помещается рабочее кольцо с образцом;

— жесткий перфорированный штамп;

— механизм для вертикального нагружения образца;

— ванна для водонасыщения образца;

— устройство для измерения вертикальных деформаций образца.

5.1.3. Подготовка к испытанию

5.1.3.1 Образец грунта изготавливают с учетом требований 5.1.1.5 и 5.1.1.6.

5.1.3.2 Изготовленный образец взвешивают и в зависимости от схемы испытания и вида грунта приступают или к его предварительному уплотнению, или сразу к испытанию на срез.

5.1.3.3 Предварительное уплотнение образца при консолидированно-дренированном испытании проводят непосредственно в рабочем кольце срезного прибора или в уплотнителе.

5.1.3.4 При предварительном уплотнении в уплотнителе рабочее кольцо с подготовленным образцом грунта следует поместить в обойму уплотнителя, а затем собранную обойму установить в ванну уплотнителя на перфорированный вкладыш (предварительно торцы образца необходимо покрыть влажным бумажным фильтром). Далее необходимо установить на образец перфорированный штамп, произвести регулировку механизма нагрузки, установить приборы для измерения вертикальных деформаций грунта и записать их начальные показания.

5.1.3.5 Для испытаний образцов грунта в условиях полного водонасыщения необходимо предварительно замочить образцы, заполнив ванну уплотнителя водой.

При испытании просадочных грунтов, имеющих природную влажность меньше w_р, необходимо доувлажнить образцы до влажности, равной w_р.

Образцам набухающих грунтов, предназначенным для определения сопротивления срезу в условиях полного водонасыщения после стабилизации деформаций набухания при заданном нормальном давлении р, необходимо передать до начала замачивания давление р.

Время насыщения образцов водой должно быть не менее значений, указанных в таблице 5.1.

Источник

Таблицы допустимого давления на грунт и несущей способности грунта.

При разработке проекта для фундамента дома учитываются все факторы, в том числе и особенности грунтов. Для расчета общей допустимой нагрузки дома на грунт фундамента вы можете использовать формулу: A = Vдома (кг) / Sфунд (см2).

Таблица допустимого давления на грунт, кг/см 2 .

Грунт

Глубина заложения фундамента

Щебень, галька с песчаным заполнением

Дресва, гравийный грунт из горных пород

Песок гравелистый и крупный

Щебень, галька с илистым заполнением

Песок средней крупности

Песок мелкий маловлажный

Песок мелкий очень влажный

Иногда влажность грунтов может изменяться в большую сторону, в таких случаях несущая способность почвы становится меньше. Рассчитать влажность грунта можно самостоятельно. Для этого необходимо выкопать скважину или яму, и в том случае если через какой либо промежуток времени в ней появляется вода – грунт влажный, а если ее нет, то он сухой. Ниже мы рассмотрим плотность и несущей способности различных грунтов. Для расчета фундамента вы можете воспользоваться калькулятором фундамента.

Таблица плотности и несущей способности различных грунтов.

Грунт средней плотности

Песок среднего размера

Супесь влажная (пластичная)

Мелкий песок (маловлажный)

Мелкий песок (влажный)

Глина влажная (пластичная)

Суглинок влажный (пластичный)

При разработке проекта дома для примерного расчета фундамента, как правило, несущая способность принимается 2 кг/см 2 .

Следует отметить, что при разработке, грунт разрыхляется и увеличивается в объеме. Объем насыпи, как правило, больше объема выемки из которой грунт изымается. Грунт в насыпи будет постепенно уплотняться, это происходит под действием собственного веса или механического воздействия, поэтому значения первоначального коэффициента увеличения объема (разрыхления) и процента остаточного разрыхления после осадки будет между собой различаться. Грунты в зависимости от трудности и способа их разработки делятся на категории.

Таблица категорий и способов разработки почвы.

Категория грунтов

Типы грунтов

Плотность, кг/м 3

Способ разработки

Песок, супесь, растительный грунт, торф

Ручной (лопаты), машинами

Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором

Ручной (лопаты, кирки), машинами

Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой

Ручной (лопаты, кирки, ломы), машинами

Тяжелая глина, жирная глина со щебнем, сланцевая глина

Ручной (лопаты, кирки, ломы, клинья и молоты), машинами

Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник

Ручной (ломы и кирки, отбойные молотки), взрывным способом

Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой

Таблица увеличения объема грунта при разрыхлении.

Категория грунта

Процент разрыхления грунта

Источник

Читайте также:  Функции компонентов кожи таблица
Adblock
detector