Меню

Правильные многогранники таблица вид граней



Правильные многогранники таблица вид граней

У тетраэдра 4 грани, 4 вершины и 6 рёбер. Грани – равносторонние треугольники. В каждой его вершине сходится три угла. Сумма этих углов при каждой вершине равна 180º.

Октаэдр

В переводе с греческого οκτάεδρον (οκτώ — «восемь» и έδρα — «основание») — многогранник с восемью гранями. Грани правильного октаэдра — . Октаэдр имеет 6 вершин и 12 рёбер. В каждой вершине сходятся 4 треугольника, поэтому сумма углов при каждой вершине октаэдра составляет 240°.

Куб в переводе с древне-греческого κύβος2 или правильный гексаэдрправильный шестигранник» от древнегреческого ἑξάς— «шесть» и ἕδρα — «седалище, основание») — правильный многогранник, каждая грань которого представляет собой .

Число сторон у грани – 4; общее число граней – 6; число рёбер примыкающих к вершине – 3; общее число вершин – 8; общее число рёбер – 12. Сумма углов при каждой вершине 90º + 90º + 90º = 270º

Додекаэдр от древнегреческого δώδεκα — «двенадцать» и εδρον — «грань». Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями.

Каждая вершина додекаэдра является вершиной . Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма углов при каждой вершине 108º + 108º + 108º = 324º

Икосаэдр от древнегреческого εἴκοσι «двадцать»; ἕδρον «сидение», «основание»— правильный выпуклый многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник.

Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм. Леонардом Эйлером в 1750 году была впервые выведена формула связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением: В + Г = Р + 2.

Вершины Ребра Грани Формула Эйлера
Тетраэдр 4 6 4 4+4=6+2
Октаэдр 6 12 8 6+8=12+2
Куб 8 12 6 8+6=12+2
Додэкаэдр 20 30 12 20+12=30+2
Икосаэдр 12 30 20 12+20=30+2

Правильные многогранники с древних времен привлекали к себе внимание ученых, архитекторов, художников. Их поражала красота, совершенство, гармония этих многогранников.

Леонардо да Винчи увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал книгу монаха Луки Пачоли «О божественной пропорции».

Другим знаменитым художником, также увлекавшимся геометрией был Альбрехт Дюрер. В своей гравюре «Меланхолия» он дал перспективное изображение додекаэдра.

Немецкий астроном и математик Иоганн Кеплер в своей работе, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры планет Солнечной системы. Такая модель получила модель «Космического кубка» Кеплера.

Знаменитая картина Сальвадора Дали «Тайная вечеря» содержит перспективное изображение правильного додекаэдра.

Источник

Правильные многогранники

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный гексаэдр (куб)

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Читайте также:  Для чего нужно знать таблицу умножения наизусть

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2·l2H 2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n-угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n-угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n-угольной призмой, если он имеет двумя своими гранями (основаниями) равные n-угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2 p.

Читайте также:  Таблица для девочки сколько она должна весить

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные ;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) ;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства ;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники .

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Источник

Многогранники — виды, свойства и формулы

Основные понятия

Определение многогранника включает в себя такое понятие, как геометрическое тело, созданное из плоских многоугольников. Их число конечное. От формы каждого из них напрямую зависят свойства итоговой фигуры. Их делят на 2 типа:

  1. Выпуклые. Располагаются над плоскостью, которую можно провести через любой многоугольник, являющийся частью геометрического тела. В них все диагонали лежат внутри. Также тут все плоские углы в сумме дают 360 градусов.
  2. Невыпуклые. Полностью или частично располагается над и под плоскостью, проведенной через выбранный многоугольник. Здесь некоторые диагонали могут располагаться снаружи.

Поскольку многогранники рассматриваются в трехмерном евклидовом пространстве, они относятся к стереометрии. А их многоугольники лежат в двумерной плоскости, что относится к планиметрии. Поэтому основные свойства и понятия формируются, включая в себя обе эти науки.

Параметры фигуры

Независимо от вида, классификации и типа , каждый многогранник имеет определенные параметры. Все они являются одинаковыми для разных фигур. К ним относятся:

  • Грани. Это многоугольники, которые формируют основную фигуру;
  • Ребра . Это стороны плоских геометрических тел, каждая из которых является смежной между двумя многоугольниками. В противном случае многогранник не существует, т. к. не имеет замкнутую форму;
  • Вершины. Характеристика определяется числом граней. Чем их больше, тем, соответственно, больше вершин;
  • Диагонали. Секущие линии, конечными точками которых являются 2 вершины, каждая из них относится к разным граням;
  • Высоты. Это перпендикуляры, проведенные от одного основания к другому (в случае с призмой — от основания к вершине).

В случае с многогранниками часто используется такое понятие, как развертка . Ее обозначение включает в себя совокупность многоугольников, а также указание сторон и вершин. Чаще всего применяется в случае, когда необходимо составить модель из бумаги или иного подручного материала. Каждый элемент может быть отдельным, равно как следовать один за другим.

Для многогранников применяется теорема Эйлера. В ней участвует количество вершин (V), ребер ® и граней (G). Формула следующая : V — R + G = 2. Указанное равенство не рассматривается ни с какими другими геометрическими телами , даже если они лежат в трехмерном евклидовом пространстве.

Правильные многогранники

Правильные многогранники — фигуры, грани которых представляют собой многоугольники с равными углами и сторонами. Также они называются Платоновыми телами. Всего существует 5 соответствующих тел, подробные характеристики которых представлены в таблице.

Название Определение Характеристики Особенности
Тетраэдр Геометрические тела, включающие в себя 4 грани (далее — Г ), все они являются правильными треугольниками Есть 4 Г , 4 вершины (далее В), 6 ребер Является разновидностью треугольной пирамиды с одинаковыми равными сторонами, центр симметрии отсутствует
Гексаэдр Фигура, состоящая из 6 Г , каждая из которых является квадратом. Дословно с греческого переводится как «шестигранник» Есть 6 Г , 8 В и 12 ребер Является кубом с центром симметрии
Октаэдр Многогранник с 8 Г , каждая из которых — правильный треугольник Есть 8 Г , 6 В и 12 ребер Является двумя правильными пирамидами, соединенных между собой через 4-угольное основание. Есть центр симметрии
Додекаэдр Фигура с 12 Г , каждая из которых является правильным пятиугольником Есть 12 Г , 20 В и 30 ребер Имеет центр симметрии, 15 осей и плоскостей
Икосаэдр Фигура с 12 Г , являющимися правильными треугольниками Есть 20 Г , 12 В и 30 ребер Есть центр симметрии, 15 осей и плоскостей
Читайте также:  График автобус 109 таблица

Правильные многогранники изучались древними греками. Однако первые модели в орнаменте и по отдельности появились намного раньше. Например, археологами были найдены вырезанные каменные шары в Шотландии, которые датируются поздним неолитом (соответственно, за 1000 лет до жизни и деятельности Платона).

Призма и ее особенности

Призма — один из видов многогранников, включающий в себя многоугольники, расположенные в разных плоскостях. Но соединить их можно посредством параллельного переноса. У фигуры имеется основание и боковые ребра . Характерные особенности геометрического тела:

  • Основания полностью идентичны друг другу, несмотря на то, что лежат в разных плоскостях;
  • Основания параллельны друг другу;
  • Боковые ребра равны и параллельны;
  • Поверхность фигуры определяется суммой оснований и боковых граней (которых может быть неограниченное количество);
  • Высота призмы определяется проведением перпендикулярной прямой из любого основания к другому;
  • Площадь поверхности: S=Sбоковая + 2Sоснований;
  • Объем призмы: V=S*h, где S — площадь основания, а h — высоты фигуры;
  • Если основанием призмы является N -угольник, фигура считается N -угольной.

Геометрическое тело называют прямым, если каждое ребро лежит перпендикулярно основанию. Также они становятся высотами. Когда грани идентичны, многоугольник считается правильным, и его диагональное сечение образует параллелограмм.

Характеристики параллелепипеда

Параллелепипед — многогранник, основанием и гранями которого является параллелограмм. Фигура характеризуется как неправильная. Основные характеристики:

  • Все грани, расположенные напротив , являются равными и параллельными;
  • Если отсутствуют общие вершины, они называются противолежащими;
  • Диагональ соединяет 2 вершины фигуры, расположенные в разных гранях;
  • Все диагонали параллелепипеда имеют одно пересечение, точка которого делит их на 2 равные части;
  • Пересечение диагоналей представляет собой центр симметрии.

Когда все грани параллелограмма являются прямоугольными, фигура характеризуется, как прямоугольная. Длина каждого ребра считается линейным размером. У такой фигуры есть три измерения. При этом справедлива формула d² = a² + b² + c². При расчетах руководствуются и другими. Для объема : V = abc, для площади многогранника: S=2·(ab+ bc +ac).

Пирамида и ее величины

Пирамида представляет собой многогранник и многоугольник. Особенности фигуры:

  • Боковая поверхность равна сумме площадей граней;
  • Высота — перпендикуляр от основания к вершине;
  • Когда N — количество углов основания, пирамида называется N -угольной;
  • Формула объема многогранника: V = 1/3·S·h;
  • Формула площади всей поверхности: Sп = Sбоковых граней + Sоснования;
  • Все сечения, включая диагональные, являются треугольниками.

Если пирамиду разделяет плоскость, параллельная нижней, она делит ее на две части. Причем верхняя пропорционально равна главной фигуре. Когда основанием является квадрат, геометрическое тело называется правильным. Гранями ее считаются равнобедренные треугольники.

Существует также такое понятие, как усеченная пирамида. Она получается только из правильной фигуры, если провести плоскость на противоположную от основания сторону, и убрать верхнюю часть. У данного тела отсутствует вершина, поскольку фактически она является квадратом , а не единичной точкой. Это не единственное отличие. К примеру, формулы, справедливые для классического формата, в данном случае неприемлемы.

Источник

Правильные многогранники таблица вид граней

Многогранником называется объемная выпуклая фигура с плоскими гранями и прямыми ребрами. Если грани представляют собой одинаковые правильные многоугольники , то такой многогранник является правильным . Правильные многогранники известны с давних времен. Так, на территории Шотландии найдены каменные фигуры правильных многогранников, возраст которых достигает \(4000\) лет! Позже древнегреческий философ и математик Платон (\(428/427 \text< BC>\) — \(348/347 \text< BC>\)) подробно описал правильные многогранники, выделив \(5\) возможных типов (их называют также платоновыми телами ). К правильным многогранникам относятся следующие тела: правильный тетраэдр , куб , октаэдр , икосаэдр и додекаэдр .

Основные свойства платоновых тел

Тело Число вершин Число ребер Число граней
Тетраэдр \(4\) \(6\) \(4\)
Куб \(8\) \(12\) \(6\)
Октаэдр \(6\) \(12\) \(8\)
Икосаэдр \(12\) \(30\) \(20\)
Додекаэдр \(20\) \(30\) \(12\)

Октаэдр − правильный многогранник с \(8\) гранями в форме треугольников.

октаэдр

Радиус сферы, вписанной в октаэдр
\(r = \large\frac<><6>\normalsize\)

Радиус сферы, описанной вокруг октаэдра
\(R = \large\frac<><2>\normalsize\)

Площадь поверхности октаэдра
\(S = 2\sqrt 3 \)

Объем октаэдра
\(V = \large\frac<<\sqrt 2 >><3>\normalsize\)

Икосаэдр − правильный многогранник с \(20\) гранями, имеющих форму треугольника.

икосаэдр

Радиус сферы, вписанной в икосаэдр
\(r = \large\frac <\right)>><<12>>\normalsize\)

Площадь поверхности икосаэдра
\(S = 5\sqrt 3 \)

Объем икосаэдра
\(V = \large\frac<<5\left( <3 + \sqrt 5 >\right)>><<12>>\normalsize\)

Додекаэдр − правильный многогранник с \(12\) гранями, каждая из которых имеет форму правильного пятиугольника.

додекаэдр

Радиус сферы, описанной вокруг додекаэдра
\(R = \large\frac <\right)>><4>\normalsize\)

Площадь поверхности додекаэдра
\(S = 3\sqrt <5\left( <5 + 2\sqrt 5 >\right)> \)

Объем додекаэдра
\(V = \large\frac<<\left( <15 + 7\sqrt 5 >\right)>><4>\normalsize\)

Источник

Adblock
detector