Функции и графики
Изучение свойств функций и их графиков занимает значительное место как в школьной математике, так и в последующих курсах. Причем не только в курсах математического и функционального анализа, и даже не только в других разделах высшей математики, но и в большинстве узко профессиональных предметов. Например, в экономике – функции полезности, издержек, функции спроса, предложения и потребления. в радиотехнике – функции управления и функции отклика, в статистике – функции распределения. Чтобы облегчить дальнейшее изучение специальных функций, нужно научиться свободно оперировать графиками элементарных функций. Для этого после изучения следующей таблицы рекомендую пройти по ссылке «Преобразования графиков функций». и/или по ссылке Построение графиков, содержащих модуль аргумента или модуль функции, а также сумму или разность нескольких модулей.
С 17.04.21 до экзаменв просмотр по кнопке ОТКРЫТ.
На занятиях школьники часто спрашивают: «Зачем это нужно знать?» Особенно волнует их этот вопрос при построении и преобразовании графиков тригонометрических функций. Что ж, давайте попробуем посмотреть на одном из сайтов в сети (например, RADIOLINK: Аксессуары) технические характеристики любимых всеми современных приборов связи — мобильников, роутеров. О чем Вам говорят термины «используемый диапазон частот», «прогрессивный метод модуляции» .
А теперь прочитайте в учебнике математики параграф «График гармонических колебаний», а в учебнике физики параграф «Электромагнитные волны». Стало понятнее?
На сервере youtube.com открыт канал Mathematichka, на котором размещаются видео, связанные с изучением графиков функций и экзаменационными задачами на эту тему. Подписывайтесь и пишите в комментариях свои вопросы и пожелания.
Пример такого видео.
Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.
Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru
Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте гиперссылку.
Источник
Показательная функция – свойства, графики, формулы
Определение
Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3. , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (см. ниже ⇓), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где – произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .
Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции».
Свойства показательной функции
Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел ( ) :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .
Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:
При b = e , получаем выражение показательной функции через экспоненту:
Частные значения
Графики показательной функции
Графики показательной функции y = a x при различных значениях основания a .
На рисунке представлены графики показательной функции
y ( x ) = a x
для четырех значений основания степени: a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем сильнее убывание.
Возрастание, убывание
Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.
y = a x , a > 1 | y = a x , 0 1 | |
Область определения | – ∞ | – ∞ |
Область значений | ||
Монотонность | монотонно возрастает | монотонно убывает |
Нули, y = 0 | нет | нет |
Точки пересечения с осью ординат, x = 0 | y = 1 | y = 1 |
+ ∞ | ||
+ ∞ |
Обратная функция
Обратной для показательной функции с основанием степени a является логарифм по основанию a .
Если 0, \; a \ne 1)» style=»width:203px;height:20px;vertical-align:-11px;background-position:-0px -492px»> , то
.
Если 0, \; a > 0, a \ne 1)» style=»width:286px;height:20px;vertical-align:-11px;background-position:-386px -469px»> , то
.
Дифференцирование показательной функции
Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.
Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных:
.
Пусть задана показательная функция:
.
Приводим ее к основанию e :
Применим правило дифференцирования сложной функции. Для этого вводим переменную
Тогда
Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку – это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.
Производная показательной функции
Пример дифференцирования показательной функции
Найти производную функции
y = 3 5 x
Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда
Из таблицы производных находим:
.
Поскольку 5ln 3 – это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.
Интеграл
Выражения через комплексные числа
Рассмотрим функцию комплексного числа z:
f ( z ) = a z
где z = x + iy ; i 2 = – 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда
.
Аргумент φ определен не однозначно. В общем виде
φ = φ + 2 πn ,
где n – целое. Поэтому функция f ( z ) также не однозначна. Часто рассматривают ее главное значение
.
Разложение в ряд
Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Автор: Олег Одинцов . Опубликовано: 21-02-2014 Изменено: 19-11-2018
Источник
11.3.1. Показательная функция, ее свойства и график
- Функцию вида y=a x , где а>0, a≠1, х – любое число, называют показательной функцией.
- Область определения показательной функции: D (y)=R – множество всех действительных чисел.
- Область значений показательной функции: E (y)=R+ — множество всех положительных чисел.
- Показательная функция y=a x возрастает при a>1.
- Показательная функция y=a x убывает при 0.
Справедливы все свойства степенной функции:
- а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице.
- а 1 =а Любое число в первой степени равно самому себе.
- a x∙ay=ax+y При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.
- a x:ay=ax-y При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.
- (ax)y=axy При возведении степени в степень основание оставляют прежним, а показатели перемножают
- (a∙b)x=ax∙by При возведении произведения в степень возводят в эту степень каждый из множителей.
- (a/b)x=ax/by При возведении дроби в степень возводят в эту степень и числитель и знаменатель дроби.
- а -х =1/ax
- (a/b)-x=(b/a)x.
Примеры.
1) Построить график функции y=2 x . Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=2 0 =1; Точка А.
x=1, y=2 1 =2; Точка В.
x=2, y=2 2 =4; Точка С.
x=3, y=2 3 =8; Точка D.
x=-1, y=2 -1 = 1 /2=0,5; Точка K.
x=-2, y=2 -2 = 1 /4=0,25; Точка M.
x=-3, y=2 -3 = 1 /8=0,125; Точка N.
Большему значению аргумента х соответствует и большее значение функции у. Функция y=2 x возрастает на всей области определения D (y)=R, так как основание функции 2>1.
2) Построить график функции y=( 1 /2) x . Найдем значения функции
при х=0, х=±1, х=±2, х=±3.
x=0, y=(½) 0 =1; Точка A.
x=1, y=(½) 1 =½=0,5; Точка B.
x=2, y=(½) 2 =¼=0,25; Точка C.
x=3, y=(½) 3 =1/8=0,125; Точка D.
x=-1, y=(½) -1 =2 1 =2; Точка K.
x=-2, y=(½) -2 =2 2 =4; Точка M.
x=-3, y=(½) -3 =2 3 =8; Точка N.
Большему значению аргумента х соответствует меньшее значение функции y. Функция y=( 1 /2) x убывает на всей своей области определения: D (y)=R, так как основание функции 0 1 /2) x , y=3 x , y=5 x , y=10 x . Сделать выводы.
График функции у=2 х мы уже строили, графики остальных функций строим аналогично, причем, достаточно будет найти значения функций при х=0 и при х=±1.
Переменная х может принимать любое значение (D (y)=R), при этом значение у всегда будет больше нуля (E (y)=R+).
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю. Чем больше основание а (если a>1) показательной функции у=а х , тем ближе расположена кривая к оси Оу.
Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.
4) В одной координатной плоскости построить графики функций:
y=( 1 /2) x , y=( 1 /3) x , y=( 1 /5) x , y=( 1 /10) x . Сделать выводы.
Смотрите построение графика функции y=( 1 /2) x выше, графики остальных функций строим аналогично, вычислив их значения при х=0 и при х=±1.
Переменная х может принимать любое значение: D (y)=R, при этом область значений функции: E (y)=R+.
Графики всех данных функций пересекают ось Оу в точке (0; 1), так как любое число в нулевой степени равно единице; с осью Ох графики не пересекаются, так как положительное число в любой степени не может быть равным нулю.
Чем меньше основание а (при 0х , тем ближе расположена кривая к оси Оу.
Все эти функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.
Решить графически уравнения:
1) 3 x =4-x.
В одной координатной плоскости построим графики функций: у=3 х и у=4-х.
Графики пересеклись в точке А(1; 3).
2) 0,5 х =х+3.
В одной координатной плоскости строим графики функций: у=0,5 х
Графики пересеклись в точке В(-1; 2).
Найти область значений функции: 1) y=-2 x ; 2) y=( 1 /3) x +1; 3) y=3 x+1 -5.
1) y=-2 x
Область значений показательной функции y=2 x – все положительные числа, т.е.
0 1 /3) x 1 , получаем:
0+ 1 1 /3) x + 1 1 ;
Запишем функцию в виде: у=3 х ∙3-5.
0∙ 3 x ∙ 3 3 ;
0 -5 x ∙3 -5 -5 ;
Источник
Показательная функция: определение, формула, свойства, график
В данной публикации мы рассмотрим определение и формулу показательной функции, перечислим ее основные свойства, а также продемонстрируем, как выглядит ее график и приведем пример его построения.
Определение показательной функции
Показательная функция – это функция вида , где:
- a – основание степени, при этом и ;
- x – показатель степени.
Примеры:
- y = 5 x
- y = 0,7 x
- y = 11 x
Свойства показательной функции
- Область определения – все действительные числа: .
- (a x ) ‘ = a x ln a
- если вместо x более сложное выражение u :
График показательной функции
Согласно Свойству 3, представленному выше, график показательной функции может быть:
- возрастающим при
- убывающим при
Асимптота – ось Ox , т.е. линия графика будет стремиться к оси абсцисс, но никогда не коснется ее.
Пример: построим график функции .
Для начала составим таблицу соответствия значений x и y .
Источник
Элементарные функции и их графики
Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».
И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.
Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.
Существует всего пять типов элементарных функций:
1. Степенные
К этому типу относятся линейные, квадратичные, кубические, ,
,
Все они содержат выражения вида x α .
2. Показательные
Это функции вида y = a x
4. Тригонометрические
В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.
Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.
Графики и свойства основных элементарных функций следует знать наизусть.
a > 1 | |
0 1 | |
0 2 + 5? Об этом — статья «Преобразования графиков функций». Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций. Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз. Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически. Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки». Источник ➤ Adblockdetector |