Меню

Mozgan ru таблица брадиса



Как пользоваться таблицей Брадиса синусов и косинусов. Пример 1

Пример 1 (случай, когда градусы и минуты, значения которых нужно определить, есть в таблице)

По таблице Брадиса синусов и косинусов найти значение синуса:

14⁰24’ (sin 14⁰24’)

Шаг 1

Для нахождения решения понадобится таблица Брадиса. Синусы нужно брать из столбца синусов – первого левого столбца.

Находим в первом левом столбике (значения этого столбика выделены синим цветом) значение, равное 14⁰.

Таблица Брадиса синусы

Шаг 2

В верхней строке (выделенной синим цветом) находим значение, равное 24.

Таблица Брадиса синусы

Шаг 3

Находим их пересечение, которое и будет синусом 14⁰24’.

Таблица Брадиса синусы

Шаг 4

sin 14⁰24’ = 0.2487

Ссылки по теме

  • Основные понятия тригонометрии
    • Глава 1. Радиус вектор, радианы
    • Глава 2. Определение и свойства функций. Таблицы значений. Знаки.
    • Глава 3. Тригонометрический круг
    • Глава 4. Таблицы Брадиса
  • Тригонометрические формулы
  • Графики и свойства тригонометрических функций
  • Обратные тригонометрические функции
  • Теоремы синусов, косинусов, тангенсов и котангенсов
  • Текстовые задачи
  • Выражения. Тождества. Одночлены. Многочлены
  • Делимость. Дроби. Десятичные дроби
  • Отношения. Пропорции. Проценты
  • Степени и корни
  • Формулы сокращенного умножения
  • Уравнения. Решение уравнений
  • Числа. Действия над числами. Множества чисел
  • Основные понятия и фигуры планиметрии
  • Треугольники
  • Многоугольники
  • Окружности и их свойства
  • Основные определения тригонометрии
  • Тригонометрические выражения, тождества и формулы
  • Графики и свойства тригонометрических функций
  • Обратные тригонометрические функции

Privacy Overview

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

Источник

Тригонометрическая таблица

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90. 360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, котангенс от 0 0 будет неопределенным
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы:

Таблица синусов, косинусов, тангенсов и котангенсов!

тригонометрия - таблица синусов, косинусов, тангенсов и котангенсов основных углов

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

таблица тригонометрических функций 360 градусов

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z . 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

расширенная таблица косинусов, синусов, котантенсов и тангенсов

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

пример работы с тригонометрической таблицей

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

находим тангенс по таблице

Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

Таблица Брадиса: синусы и косинусы

tg угла начиная с 0 0 заканчивая 76 0 , ctg угла начиная с 14 0 заканчивая 90 0 .

Таблица Брадиса: тангенсы - котангенсы

tg до 90 0 и ctg малых углов.

расширенная таблица тангенсов

Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.
тригонометрия по таблице Брадиса
Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
пример - тригонометрия по таблице Брадиса
При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054
находим синус по таблице Брадиса
При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 20 0 = 0.9397
пример4 по таблице
Значения tg угла до 90 0 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967
пример 5 по Брадису
а ctg 20 0 13мин = 25,83
Таблица синусов Брадиса. Пример 6

Читайте также:  Когда начинать прикорм искусственнику таблица

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Источник

Все о таблице Брадиса: синусы, косинусы, тангенсы, котангенсы

  • Что такое таблица Брадиса
  • Функциональные возможности таблицы
  • Таблица синусов и косинусов
  • Таблица для тангенсов и котангенсов
  • Значения от 181 до 360 градусов
  • Практические примеры использования таблицы

Что такое таблица Брадиса

Использование калькуляторов при сложных расчетах (например, формулах с применением логарифмов) сегодня считается стандартом по умолчанию. Но еще 20-30 лет назад, когда вычислительная техника была распространена не так сильно, на помощь приходили другие способы вычислений — с помощью специальных таблиц, логарифмической линейки или арифмометра.

Таблица Брадиса — математическое пособие, в котором собраны таблицы, необходимые для работы по курсу математики и для практических вычислений, созданное Владимиром Модестовичом Брадисом.

Свое название они получили от брошюры «Четырехзначные математические таблицы», составленной Владимиром Брадисом. Книга неоднократно переиздавалась в советское время большими тиражами (до 500 000 экземпляров) и широко использовалась в учебном процессе — на уроках алгебры, геометрии и физики.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Функциональные возможности таблицы

Самыми распространенными являются таблицы, содержащие тригонометрические функции (например, синус, косинус, тангенс, котангенс и арктангенс).

В целом, в сборнике Брадиса содержалось более 20 таблиц, в том числе, помогавшие найти значения:

  • значение дробей вида 1/n;
  • квадратов;
  • квадратных корней;
  • площади круга определенного диаметра;
  • радианной меры;
  • мантиссы десятичных логарифмов;
  • номограммы для решения отдельных уравнений.

Таблица синусов и косинусов

Таблица синусов

В силу широкого использования синусов и косинусов в учебных задачах, это самая распространенная из таблиц Брадиса. Она дает значение этих тригонометрических функций для любого острого угла от 0° до 90°. С помощью дополнительных колонок можно находить и более точные спецификации. Это 6′, 12′,18, 24′, 30′, 36′, 42′, 48′ и 54′ для углов указанного диапазона, например:

  • \(\sin\;10^\circ\;=\;0,1736\) . С помощью дополнительных колонок находим — \(\sin\;10^\circ\;12’\;=\;0,1771,\;\sin\;10^\circ\;24’\;=\;0,1805\) ;
  • \(\sin\;50^\circ\;=\;0,7660\) . Обращаясь к дополнительной колонке выясняем, что \(\sin\;50^\circ\;12’\;=\;0,7683,\;\sin\;50^\circ\;24’\;=\;0,7705\) .

Если нужны еще более точные показатели, то нужно использовать поправочные коэффициенты, отнимая и прибавляя их к ближайшему табличному значению минут. Используя их, находим:

Для нахождения косинусов можно использовать значения в правой колонке, но куда удобнее вычислять через синус угла, дополняющего до 90°. В этом случае:

Аналогично проводят и более точные вычисления, в том числе — с использованием поправочных коэффициентов:

Таблица для тангенсов и котангенсов

Таблица Брадиса

Аналогичным образом с помощью соответствующей таблицы Брадиса можно найти значения тангенса:

  • \(tg\;10^\circ\;=\;0,1763\) . Прибегая к помощи дополнительных колонок находим — \(tg\;10^\circ\;12’\;=\;0,1799,\;tg\;10^\circ\;24’\;=\;0,1835\) ;
  • \(tg\;50^\circ\;=\;1,1918\) . Заглянув в дополнительную колонку выясняем, что \(tg\;50^\circ\;12’\;=\;1,2002,\;tg\;50^\circ\;24’\;=\;1,2088\) .

Для более точных показателей применяем поправочные коэффициенты (аналогично, как для таблиц синуса и косинуса):

С помощью правой колонки таблицы Брадиса со значением тангенсов можно найти котангенс. Альтернативный вариант — вычисление через тангенс угла, дополняющего искомый до 90°:

  • \(ctg\;10^\circ\;=\;tg\;80^\circ\;=\;5,671\) . Прибегая к помощи дополнительных колонок находим — \(сtg\;10^\circ\;12’\;=\;5,558,\;сtg\;10^\circ\;24’\;=\;5,449\) (аналогичные результаты могут быть получены, если посмотреть в значение тангенса дополняющих углов — 79° 48′ и 79° 36′ соответственно);
  • \(ctg\;50^\circ\;=\;0,8391\) . Заглянув в дополнительную колонку выясняем, что \(ctg\;50^\circ\;12’\;=\;0,8332,\;ctg\;50^\circ\;24’\;=\;0,8273\) (как вариант, можно уточнить значение тангенса дополняющих углов — 39° 48′ и 39° 36′).

Важно отметить, что значения тангенсов (и соответствующих им котангенсов) распределены по двум таблицам:

  • тангенсы углов от 0° до 76° (и котангенсы от 90° до 24°);
  • tg от 76° до 90° (и ctg от 24° до 0°).

Такое разделение связано с особенностями предоставления информации. Для котангенсов углов, близких к 90° (и котангенсам острых углов) проблематично использовать общие поправки, поэтому значения там даются индивидуально для каждого значения.

Например, в отдельных строках таблицы, без применения поправочных величин, приводятся:

  • \(tg\;80^\circ\;(и\;ctg\;10^\circ)\;=\;5,671\) ;
  • \(tg\;80^\circ\;1’\;(и\;ctg\;10^\circ\;59′)\;=\;5,681\) ;
  • \(tg\;80^\circ\;2’\;(и\;ctg\;10^\circ\;58′)\;=\;5,\;691\) ;
  • и так далее.

Величину тангенса и котангенса можно узнать и имея в наличии только таблицу Брадиса по синусам и косинусам. Для этого надо воспользоваться формулами:

Подставляя необходимые значения получим:

Значения от 181 до 360 градусов

Таблицы Брадиса дают значения для углов от 0° до 90°. Остальные величины можно легко найти с помощью формул приведения. В этом случае угол, величину которого необходимо узнать, представляется как сумма (или разность) угла, кратного 90° и острого угла, например, для 140° это будет:

  • 90° + 50°;
  • 180° — 40°.

Формулы приведения, которые используются в этом случае, имеют вид:

Для примера можно провести расчет для ситуации, когда угол в 140° представлен как 90° + 50°:

  • \(\sin\;(90^\circ\;+\;50^\circ)\;=\;\cos\;50^\circ\;=\;0,6428\) ;
  • \(\cos\;(90^\circ\;+\;50^\circ)\;=\;-\sin\;50^\circ\;=\;-0,7660\) ;
  • \(tg(90^\circ+50^\circ)=-ctg50^\circ=-0,8391\) ;
  • \(ctg\;(90^\circ\;+\;50^\circ)\;=\;tg\;50^\circ\;=\;1,1918\) .

Практические примеры использования таблицы

Таблицам Брадиса легко можно найти применение в современном учебном процессе, например, выполняя школьные уроки.

Задача №1

10-метровая лестница опирается на здание таким образом, что имеет угол наклона 35°. Необходимо узнать расстояние от земли до ее вершины.

Решение

Имеем треугольник, где угол BСA = 90°, BАC = 30°. По определению^

где ВС — высота лестницы, которую нужно найти, а АВ — известная из условия длина.

Читайте также:  Размеры робы мужской одежды таблицы

Узнав из таблицы Брадиса нужный синус и подставив все известные значения в формулу, можно найти ответ:

ВС (высота лестницы) = 10 м х 0,5736 = 5,736 метров.

Задача №2

Найдете длину тени от маяка высокой 30 м, если солнце находится в 60° над горизонтом.

Решение

Схематически условия задачи можно представить в виде треугольника, с прямым углом ВСА, и ВАС = 55°. По определению:

где АВ — высота маяка, а СВ — длина тени.

Определив по таблице Брадиса нужную величину и подставив в формулу все известные значения, получим:

СВ (длина тени) = 30 м / 1,732 = 17,32 метра.

Источник

Таблица брадиса синусы и косинусы тангенсы котангенсы

Таблица брадиса синусы и косинусы тангенсы котангенсы приравнивается к современной революции в вычислительной технике. Однако тонкая брошюра четырехзначных величин заложена в современных высоких технологиях.
Советский ученый представил результаты расчетов функций углов, создав условия ученым разных областей науки творить и двигаться вперёд, сократив тяжелые расчеты.
Приведенная система четырехзначных вычислений Брадиса предназначена для функций квадратов, кубов. Квадратные и кубические корни, логарифмы, обратной функции и аргументов функций углов.
Числовые величины тригонометрических функций вычислить, пользуясь приведенной четырехзначной системой Брадиса возможна для тех, кто делает первые шаги в математике, начиная со знакомство с ней на школьных уроках.

↑ Таблица брадиса синусы и косинусы тангенсы котангенсы как пользоваться?

Схема сведенных числовых значений имеет аналогию для всех заданных аргументов:

  • числовые величины верхней строки и левой вертикальной колонки отвечаютаргументу синуса или тангенса;
  • последняя нижняя строчка и числовые значения последнего столбца соответствуют функциям угла – косинусу и котангенсу;
  • столбцы соответствуют целым значениям градусов угла;
  • горизонтальные строки содержат минутныевеличины аргумента (угла);•ячейка в месте пересечения вертикальной графы и строки отвечает значению определяемой функции, точность которой соответствует четырем цифровым значениям после запятой;
  • так как значение искомого аргумента может представлять дробную величину, при вычислении нужно использовать поправочные величины, которые расположена в последних трех столбцах таблицы.

Для синуса и тангенса поправка используется со знаком (+), к косинусу и котангенсу поправку применяют со знаком (-).

Источник

Таблица Брадиса для всех

На нашей страничке вы найдете самую полную Таблицу Брадиса, синусов и косиносов различных углов, а так же тангенсов, котангенсов и множество другой полезной информации для уроков тригонометрии.
Показать полностью. Для особо вьедливых учеников доступна версия для онлайн скачивания таблицы брадиса в самом удобном формате. Присоединяясь к нашей страничке вы всегда будете вкурсе самой полезной информации по тригонометрии, математическому анализу и другим прикладным предметам, которые изучаются в школе и вузе.

Пишите свои отзывы и предложения по теме и самые полезные и необходимые материалы вы обнаружите в нашей группе.

Открыть приложение

Участвовать

  • Все записи
  • Записи сообщества
  • Поиск

Таблица Брадиса для всех запись закреплена
Таблица Брадиса для всех запись закреплена

Самая удобная и увлекательная подготовка к ЕГЭ

Таблица Брадиса для всех запись закреплена
Бизнес цитатник

Владимир Тютрин

Владимир Тютрин

Таблица Брадиса для всех запись закреплена
Практическая Магия + Руны

Разрушение стереотипов поведения и мышления «СПиМ»
**************************************************
Точки первая и последняя-«Я -есмь»,у кого разрушаем стереотип и к кому приходит понимание ситуации;
Наутиз-сам стереотип;
Квеорт-сжигает и дает энергии ставу;
Показать полностью.
Лагузы пр.и перев.-выводят потоками отжившее старое и приводят в жизнь новое состояние;
Эйваз+Турисазы пр и зерк.-врата, в которых Турсы отсекают и не дают возвращаться обратно отжившим стереотипам;
Отал-душа,объект;
Ансуз+Райдо-путь к новому пониманию ситуации;
Беркана-с гармонией в душе;
Вуньо-приносящий радость.

Оговор:
Данный рунический став сжигает и разрушает тот стереотип поведения или мышления(СПиМ),наработанный или внушаемый той или иной ситуацией или зависимостью,которая в данный момент мешает добиться желаемого позитивного результата в конкретной ситуации.
Став позволяет ,избавившись от СПиМ,прийти к верному и нужному на данный момент разрешению ситуации,к новому уровню мышления,с мудростью,гармонией с самим собой и с окружающим миром,радостью от избавления от навязанной или приобретенной формы СПиМ.

Таблица Брадиса для всех запись закреплена
LIFE LESSONS | Уроки жизни
Таблица Брадиса для всех запись закреплена

Интересные факты о математике

Сегодня мы поделимся с вами оригинальными и необычными фактами из мира этой серьезной науки. Место для несерьезного или просто увлекательного, найдется в любой точной науке. Главное, желание отыскать это.

1. Среди всех фигур с одинаковым периметром, у круга будет самая большая площадь. И наоборот, среди всех фигур с одинаковой площадью, у круга будет самый маленький периметр.
Показать полностью.

2. На самом деле, миг – это единица времени, которая длится примерно сотую долю секунды.

3. Число 18, является единственным (кроме нуля) числом, сумма цифр которого в два раза меньше него самого.

4. В группе из 23-х человек и более, вероятность, что у двоих совпадет день рождения, превышает 50%, а в группе от 60 человек такая вероятность составляет около 99%.

5. В математике существуют: теория кос, теория игр и теория узлов.

6. Пирог можно разрезать тремя касаниями ножа на восемь равных частей. Причем, двумя способами.

7. 2 и 5 – единственные простые числа, которые заканчиваются на 2 и 5.

8. Ноль – единственное число, которое нельзя написать римскими цифрами.

9. Знак равенства «=» впервые применил британец Роберт Рекорд в 1557-м году.

10. Сумма чисел от 1 до 100 равняется 5050.

11. С 1995-го года в Тайбэе, на Тайване, жителям разрешено удалять цифру четыре, так как на китайском языке эта цифра звучит тождественно слову «смерть». Во многих зданиях отсутствует четвертый этаж.

12. Считается, что несчастливым число 13 стало из-за Тайной Вечери, на которой присутствовали 13 человек, включая Иисуса. 13-м был Иуда Искариот.

13. Чарльз Лютвидж Доджсон – малоизвестный британский математик, посвятивший большую часть своей жизни логике. Тем не менее, он всемирно известный писатель, писавший под псевдонимом Льюис Кэрролл.

14. Первой женщиной-математиком в истории, считается гречанка Гипатия, жившая в египетской Александрии в IV-V веках нашей эры.

15. Американец Джордж Данциг, будучи студентом, опоздал на занятия и по ошибке принял записанные на доске уравнения, как домашнее задание. С трудом, но будущий ученый с ними справился. Как выяснилось позже, это были две «нерешаемые» проблемы в статистике, над разрешением которых ученые бились много лет.

16. Современный гений и профессор математики Стивен Хокинг утверждает, что математику изучал только в школе. Во времена преподавания математики в Оксфорде, Стивен просто читал учебник с опережением собственных студентов на пару недель.

17. В 1992-м году австралийские единомышленники объединились ради выигрыша в лотерею. На кону было 27 миллионов долларов. Количество комбинаций 6 из 44, составляло немногим более семи миллионов, при стоимости лотерейного билета в 1 доллар. Эти единомышленники создали фонд, в который каждый из 2500 человек вложил по три тысячи долларов. Результат – выигрыш и возврат 9 тысяч каждому.

18. Софье Ковалевской, ради науки, пришлось оформить фиктивный брак. В России женщинам было запрещено заниматься наукой. Отец был против выезда дочери заграницу. Единственным способом оказалось замужество. Правда, позднее, фиктивный брак стал фактическим и Софья даже родила дочь.

Таблица Брадиса для всех запись закреплена

9 ЛЕГКИХ МАТЕМАТИЧЕСКИХ ТРЮКОВ

На многих людей математика может наводить ужас. Этот список, возможно, улучшит общие знания о математических приемах и ускорит выполнение математических вычислений в уме.

1. Умножение на 11
Показать полностью.
Все мы знаем, что при умножении на 10 к числу добавляется 0, а знаете ли вы, что существует такой же простой способ умножения двузначного числа на 11? Вот он:
Возьмите исходное число и представьте промежуток между двумя знаками (в этом примере мы используем число 52):
5_2
Теперь сложите два числа и запишите их посередине:
5_(5+2)_2
Таким образом, ваш ответ: 572.
Если при сложении чисел в скобках получается двузначное число, просто запомните вторую цифру, а единицу прибавьте к первому числу:
9_(9+9)_9
(9+1)_8_9
10_8_9
1089 – это срабатывает всегда.

2. Быстрое возведение в квадрат
Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5. Умножьте первую цифру саму на себя +1, а в конце допишите 25. Вот и все!
252 = (2x(2+1)) & 25
2 x 3 = 6
625

3. Умножение на 5
Большинство людей очень просто запоминает таблицу умножения на 5, но, когда приходится иметь дело с большими числами, сделать это становится сложнее. Или нет? Этот прием невероятно прост.
Возьмите любое число, разделите на 2 (другими словами, поделите пополам). Если в результате получилось целое число, припишите 0 в конце. Если нет, не обращайте внимание на запятую и в конце добавьте 5. Это срабатывает всегда:
2682 x 5 = (2682 / 2) & 5 или 0
2682 / 2 = 1341 (целое число, поэтому добавьте 0)
13410
Давайте попробуем другой пример:
5887 x 5
2943,5 (дробное число, пропустите запятую, добавьте 5)
29435

4. Умножение на 9
Это просто. Чтобы умножить любое число от 1 до 9 на 9, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например 9х3 – загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9х3 – это 2), затем посчитайте после загнутого пальца (в нашем случае – 7). Ответ – 27.

5. Умножение на 4
Это очень простой прием, хотя очевиден лишь для некоторых. Хитрость в том, что нужно просто умножить на 2, а затем опять умножить на 2:
58 x 4 = (58 x 2) + (58 x 2) = (116) + (116) = 232

6. Подсчет чаевых
Если вам нужно оставить 15% чаевых, есть простой способ сделать это. Высчитайте 10% (разделите число на 10), а потом добавьте получившееся число к его половине и получите ответ:
15% от $25 = (10% от 25) + ((10% от 25) / 2)
$2.50 + $1.25 = $3.75

7. Сложное умножение
Если вам нужно умножать большие числа, причем одно из них — четное, вы можете просто перегруппировать их, чтобы получить ответ:
32 x 125 все равно, что:
16 x 250 все равно, что:
8 x 500 все равно, что:
4 x 1000 = 4,000

8. Деление на 5
На самом деле делить большие числа на 5 очень просто. Все, что нужно, — просто умножить на 2 и перенести запятую: 195 / 5
Шаг1: 195 * 2 = 390
Шаг2: Переносим запятую: 39,0 или просто 39.
2978 / 5
Шаг1: 2978 * 2 = 5956
Шаг2: 595,6

9. Вычитание из 1000
Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом: Отнимите от 9 все цифры, кроме последней. А последнюю цифру отнимите от 10: 1000
-648
Шаг1: от 9 отнимите 6 = 3
Шаг2: от 9 отнимите 4 = 5
Шаг3: от 10 отнимите 8 = 2
Ответ: 352

Источник

Adblock
detector