Меню

Модуль высота зуба таблица

Модуль высота зуба таблица

Чтобы нарезать зубчатое колесо, надо знать элементы зубчатого зацепления, т. е. число зубьев, шаг зубьев, высоту и толщину зуба, диаметр делительной окружности и наружный диаметр. Эти элементы показаны на рис. 240.

Рассмотрим их последовательно.
В каждом зубчатом колесе различают три окружности и, следовательно, три соответствующих им диаметра:
во-первых, окружность выступов, которая представляет собой наружную окружность заготовки зубчатого колеса; диаметр окружности выступов, или наружный диаметр, обозначается Dе;
во-вторых, делительную окружность, которая представляет собой условную окружность, делящую высоту каждого зуба на две неравные части — верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба; высота головки зуба обозначается h’, высота ножки зуба — ; диаметр делительной окружности обозначается d;
в-третьих, окружность впадин, которая проходит по основанию впадин зуба; диаметр окружности впадин обозначается Di.
Расстояние между одноименными (т. е. обращенными в одну сторону, например двумя правыми или двумя левыми) боковыми поверхностями (профилями) двух смежных зубьев колеса, взятое по дуге делительной окружности, называется шагом и обозначается t. Следовательно, можно записать:

где t — шаг в мм;
d — диаметр делительной окружности;
z — число зубьев.
Модулем m называется длина, приходящаяся по диаметру делительной окружности на один зуб колеса; численно модуль равен отношению диаметра делительной окружности к числу зубьев. Следовательно, можно записать:

Из формулы (10) следует, что шаг

t = πm = 3,14m мм. (9б)

Чтобы узнать шаг зубчатого колеса, надо его модуль умножить на π.
В практике нарезания зубчатых колес наиболее важным является модуль, так как все элементы зуба связаны с велининой модуля.
Высота головки зуба h’ равна модулю m, т. е.

h’ = m. (11)

Высота ножки зуба равна 1,2 модуля, или

= 1,2m. (12)

Высота зуба, или глубина впадины,

h = h’ + = m + 1,2m = 2,2m. (13)

По числу зубьев z зубчатого колеса можно определить диаметр его делительной окружности.

d = z · m. (14)

Наружный диаметр зубчатого колеса равен диаметру делительной окружности плюс высота двух головок зуба, т. е.

De = d + 2h’ = zm + 2m = (z + 2)m. (15)

Следовательно, для определения диаметра заготовки зубчатого колеса надо число его зубьев увеличить на два и полученное число умножить на модуль.
В табл. 16 даны основные зависимости между элементами зубчатого зацепления для цилиндрического колеса.

Пример 13. Определить все размеры, необходимые для изготовления зубчатого колеса, имеющего z = 35 зубьев и m = 3.
Определяем по формуле (15) наружный диаметр, или диаметр заготовки:

De = (z + 2)m = (35 + 2) · 3 = 37 · 3 = 111 мм.

Определяем по формуле (13) высоту зуба, или глубину впадины:

h = 2,2m = 2,2 · 3 = 6,6 мм.

Определяем по формуле (11) высоту головки зуба:

h’ = m = 3 мм.

Зуборезные фрезы

Для фрезерования зубчатых колес на горизонтально-фрезерных станках применяют фасонные дисковые фрезы с профилем, соответствующим впадине между зубьями колеса. Такие фрезы называют зуборезными дисковыми (модульными) фрезами (рис. 241).

Зуборезные дисковые фрезы подбирают в зависимости от модуля и числа зубьев фрезеруемого колеса, так как форма впадины двух колес одного и того же модуля, но с разным числом зубьев неодинакова. Поэтому при нарезании зубчатых колес для каждого числа зубьев и каждого модуля следовало бы иметь свою зуборезную фрезу. В условиях производства с достаточной степенью точности можно пользоваться несколькими фрезами для каждого модуля. Для нарезания более точных зубчатых колес необходимо иметь набор из 15 зуборезных дисковых фрез, для менее точных достаточен набор из 8 зуборезных дисковых фрез (табл 17).

15-штучный набор зуборезных дисковых фрез

Номер фрезы 1 2 3 4
Число зубьев на-
резаемого ко-
леса
12 13 14 15-16 17-18 19-20 21-22
Номер фрезы 5 6 7 8
Число зубьев на-
резаемого ко-
леса
23-25 26-29 30-34 35-41 42-54 55-79 80-134 135
рейка

8-штучный набор зуборезных дисковых фрез

Номер фрезы 1 2 3 4 5 6 7 8
Число зубьев на-
резаемого ко-
леса
12-13 14-16 17-20 21-25 26-34 35-54 55-134 135
рейка

В целях сокращения количества размеров зуборезных фрез в Советском Союзе модули зубчатых колес стандартизованы, т. е. ограничены следующими модулями: 0,3; 0,4; 0,5; 0,6; 0,75; 0,8; 1,0; 1,25; 1,5; 1,75; 2,0; 2,25; 2,50; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11; 12; 13; 14; 15; 16; 18; 20; 22; 24; 26; 28; 30; 33; 36; 39; 42; 45; 50.
На каждой зуборезной дисковой фрезе выбиты все характеризующие ее данные, позволяющие правильно произвести выбор необходимой фрезы.
Зуборезные фрезы изготовляют с затылованными зубьями. Это — дорогой инструмент, поэтому при работе с ним необходимо строго соблюдать режимы резания.

Измерение элементов зуба

Измерение толщины и высоты головки зуба производится зубомером или штангензубомером (рис. 242); устройство его измерительных губок и метод отсчета по нониусу подобны прецизионному штангенциркулю с точностью 0,02 мм.

Величина А, на которую следует установить ножку 2 зубомера, будет:

А = h’ · а = m · а мм, (16)

где m — модуль измеряемого колеса.
Коэффициент а всегда больше единицы, так как высота головки зуба h’ измеряется по дуге начальной окружности, а величина А измеряется по хорде начальной окружности.
Величина В, на которую следует установить губки 1 и 3 зубомера, будет:

В = m · b мм, (17)

где m — модуль измеряемого колеса.
Коэффициент b учитывает, что размер В — это размер хорды по начальной окружности, в то время как ширина зуба равна длине дуги начальной окружности.
Значения а и b даны в табл. 18.
Так как точность отсчета штангензубомера составляет 0,02 мм, то у полученных по формулам (16) и (17) величин отбрасываем третий десятичный знак и округляем до четных значений.

Значения a и b для установки штангензубомера

Число зубьев
измеряемого
колеса
Значения коэффициентов Число зубьев
измеряемого
колеса
Значения коэффициентов
a b a b
12 1,0513 1,5663 27 1,0228 1,5698
13 1,0473 1,5669 28 1,0221 1,5699
14 1,0441 1,5674 29 1,0212 1,5700
15 1,0411 1,5679 30 1,0206 1,5700
16 1,0385 1,5682 31-32 1,0192 1,5701
17 1,0363 1,5685 33-34 1,0182 1,5702
18 1,0342 1,5688 35 1,0176 1,5702
19 1,0324 1,5690 36 1,0171 1,5703
20 1,0308 1,5692 37-38 1,0162 1,5703
21 1,0293 1,5693 39-40 1,0154 1,5704
22 1,0281 1,5694 41-42 1,0146 1,5704
23 1,0268 1,5695 43-44 1,0141 1,5704
24 1,0257 1,5696 45 1,0137 1,5704
25 1,0246 1,5697 46 1,0134 1,5705
26 1,0237 1,5697 47-48 1,0128 1,5706
49-50 1,023 1,5707 71-80 1,0077 1,5708
51-55 1,0112 1,5707 81-127 1,0063 1,5708
56-60 1,0103 1,5708 128-135 1,0046 1,5708
61-70 1,0088 1,5708 Рейка 1,0000 1,5708

Пример 14. Установить зубомер для проверки размеров зуба колеса с модулем 5 и числом зубьев 20.
По формулам (16) и (17) и табл. 18 имеем:
А = m · а = 5 · 1,0308 = 5,154 или, округленно, 5,16 мм;
В = m · b = 5 · 1,5692 = 7,846 или, округленно, 7,84 мм.

Читайте также:  Создание таблицы стилей html

Источник



Справочные таблицы для расчета зубчатых передач

Модули для зубчатых колес

0,25 (0,7) (1,75) 3 (5,5) 10 (18) 32
0,3 0,8; (0,9) 2 (3,5) 6 (11) 20 (36)
0,4 1; (1,125) (2,25) 4 (7) 12 (22) 40
0,5 1,25 2,5 (4,5) 8 (14) 25 (45)
0,6 1,5 (2,75) 5 (9) 16 (28) 50

Допускается применение модулей 3,25; 3,75 и 4,25 мм для автомобильной промышленности и модуля 6,5 мм для тракторной промышленности
Распространяется на модули зубчатых колес цилиндрических, конических и червячных с цилиндрическим червяком.
Для цилиндрических колес с косым и шевронным зубом модуль определяется по нормальному шагу. В исключительных обоснованных случаях допускается определение модуля в торцовом сечении.
Для конических зубчатых колес модуль определяется по большему диаметру.
Для червячных колес с цилиндрическим червяком модуль определяется в осевом сечении червяка.
Значения модулей заключенные в скобки применять не рекомендуется

Основные параметры зубчатых цилиндрических передач

Стандарт распространяется на цилиндрические передачи внешнего зацепления для редукторов и ускорителей, в том числе и комбинированных (коническо-цилиндрических, цилиндро-червячных и др.), выполняемых в виде самостоятельных агрегатов.
Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции
Для встроенных передач стандарт является рекомендуемым

Межосевые расстояния

1 ряд 40 50 63 80 100 125 160 200 250 315 400
2 ряд 140 180 225 280 355
1 ряд 500 630 800 1000 1250 1600 2000 2500
2 ряд 450 560 710 900 1120 1400 1800 2240

1-й ряд следует предпочитать 2-му

Номинальные передаточные числа

1 ряд 1,0 1,25 1,6 2,0 2,5 3,15
2 ряд 1,12 1,4 1,8 2,24 2,8
1 ряд 4,0 5,0 6,3 8,0 10 12,5
2 ряд 3,55 4,5 5,6 7,1 9,0 11,2

1-й ряд следует предпочитать 2-му
Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 2,5% при номинальном меньше 4,5 и на 4% при номинальном больше 4,5

Коэффициент ширины зубчатых колес (отношение ширины зубчатого колеса к межосевому расстоянию) должен соответствовать:
0,100; 0,125; 0,160; 0,200; 0,315; 0,400; 0,500; 0,630; 0,800; 1,0; 1,25

Численные значения ширины зубчатых колес округляются до ближайшего числа из ряда Ra20 по ГОСТу 6636

При различной ширине сопряженных зубчатых колес значение коэффициента ширины зубчатых колес относится к более узкому из них

Коэффициент запаса прочности при работе зуба двумя сторонами

например: зубья реверсивных передач или зубья сателлитов в планетарных передачах

Материал колес и термо-
обработка
Отливки стальные и чугунные без термо-
обработки
Отливки стальные и чугунные с термо-
обработкой
Поковки стальные нормали-
зованные или улучшенные
Поковки и отливки стальные с поверх-
ностной закалкой (сердцевина вязкая)
Стальные, нормали-
зованные или улучшенные, а также с поверх-
ностной закалкой
Стальные с объемной закалкой Стальные, подверг-
нутые цементации, азоти-
рованию, циани-
рованию и др.
Чугунные и пласт-
массовые колеса
Коэфф. 1,9 1,7 1,5 2,2 1,4 — 1,6 1,8 1,2 1 — 1,2

Межосевые расстояния для двухступенчатых несоосных редукторов общего назначения

Быстроходная ступень 40 50 63 80 100 125 140 160 180 200 225 250 280 315
Тихоходная ступень 63 80 100 125 160 200 225 250 280 315 355 400 450 500
Быстроходная ступень 355 400 450 500 560 630 710 800 900 1000 1120 1250 1400 1600
Тихоходная ступень 560 630 710 800 900 1000 1120 1250 1400 1600 1800 2000 2240 2500

Межосевые расстояния для трехступенчатых несоосных редукторов общего назначения

Быстроходная ступень 40 50 63 80 100 125 140 160 180 200
Промежуточная ступень 63 80 100 125 160 200 225 250 280 315
Тихоходная ступень 100 125 160 200 250 315 355 400 450 500
Быстроходная ступень 225 250 280 315 355 400 450 500 560 630
Промежуточная ступень 355 400 450 500 560 630 710 800 900 1000
Тихоходная ступень 560 630 710 800 900 1000 1120 1250 1400 1600

Общие передаточные числа для двухступенчатых редукторов

1 ряд 6,3 8,0 10 12,5 16
2 ряд 7,1 9,0 11,2 14 18
1 ряд 20 25 31,5 40 50
2 ряд 22,4 28 35,5 45 56

Основные параметры конических зубчатых передач

Стандарт распространяется на конические передачи с углом пересечения осей, равным 90°, для редукторов (и ускорителей), в том числе и комбинированных (коническо-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов.
Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции (авиационные, автомобильные, тракторные).
Для встроенных передач стандарт является рекомендуемым

Номинальные диаметры основания делительного конуса большего колеса должны соответствовать:
50, (56), 63, (71), 80, (90), 100, (112), 125, (140), 160, (180), 200, (225), 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1600
Номинальные диаметры заключенные в скобки, по возможности не применять

Номинальные передаточные числа

1 ряд 1,0 1,25 1,6 2,0 2,5 3,15 4,0 5,0 6,3
2 ряд 1,12 1,4 1,8 2,24 2,8 3,55 4,5 5,6

Передаточные числа 2-го ряда по возможности не применять
Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 3%

Ширина зубчатых колес

Ширину зубчатых колес b выбирают
b = ψ l l = (0,25 ÷ 0,30) l
где ψ l — коэффициент длины зуба
l — длина образующей делительного конуса

Источник

Основные размеры зубчатых колес

Основные параметры конических зубчатых передач

Стандарт распространяется на конические передачи с углом пересечения осей, равным 90°, для редукторов (и ускорителей), в том числе и комбинированных (коническо-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов. Стандарт не распространяется на передачи редукторов специального назначения и специальной конструкции (авиационные, автомобильные, тракторные). Для встроенных передач стандарт является рекомендуемым

Читать также: Что делать с отработанными батарейками

Номинальные диаметры основания делительного конуса большего колеса должны соответствовать: 50, (56), 63, (71), 80, (90), 100, (112), 125, (140), 160, (180), 200, (225), 250, 280, 315, 355, 400, 450, 500, 560, 630, 710, 800, 900, 1000, 1120, 1250, 1600 Номинальные диаметры заключенные в скобки, по возможности не применять

Читайте также:  Таблица разделы югославия греция франция польша

Номинальные передаточные числа

1 ряд 1,0 1,25 1,6 2,0 2,5 3,15 4,0 5,0 6,3
2 ряд 1,12 1,4 1,8 2,24 2,8 3,55 4,5 5,6

Передаточные числа 2-го ряда по возможности не применять Фактические значения передаточных чисел не должны отличаться от номинальных более чем на 3%

Ширина зубчатых колес

Ширину зубчатых колес b выбирают b = ψ l l = (0,25 ÷ 0,30) l где ψ l — коэффициент длины зуба l — длина образующей делительного конуса

При поломке зубчатого колеса или шестерни в редукторе какого-либо механизма или машины возникает необходимость по «старой» детали, а иногда по фрагментам обломков создать чертеж для изготовления нового колеса и/или шестерни. Эта статья будет полезна тем.

. кому приходится восстанавливать зубчатые передачи при отсутствии рабочих чертежей на вышедшие из строя детали.

Обычно для токаря и фрезеровщика все необходимые размеры можно получить с помощью замеров штангенциркулем. Требующие более пристального внимания, так называемые, сопрягаемые размеры – размеры, определяющие соединение с другими деталями узла – можно уточнить по диаметру вала, на который насаживается колесо и по размеру шпонки или шпоночного паза вала. Сложнее обстоит дело с параметрами для зубофрезеровщика. В этой статье мы будем определять не только модуль зубчатого колеса, я попытаюсь изложить общий порядок определения всех основных параметров зубчатых венцов по результатам замеров изношенных образцов шестерни и колеса.

«Вооружаемся» штангенциркулем, угломером или хотя бы транспортиром, линейкой и программой MS Excel, которая поможет быстро выполнять рутинные и порой непростые расчеты, и начинаем работу.

Как обычно раскрывать тему я буду на примерах, в качестве которых рассмотрим сначала цилиндрическую прямозубую

передачу с наружным зацеплением, а затем
косозубую.
Расчетам зубчатых передач на этом сайте посвящено несколько статей: «Расчет зубчатой передачи», «Расчет геометрии зубчатой передачи», «Расчет длины общей нормали зубчатого колеса». В них приведены рисунки с обозначениями параметров, используемых в данной статье.

Эта статья продолжает тему и призвана раскрыть алгоритм действий при ремонтно-восстановительных работах, то есть работах, обратных проектировочным.

Расчеты можно выполнить в программе MS Excel или в программе OOo Calc из пакета Open Office.

О правилах форматирования ячеек листа Excel, которые применены в статьях этого блога, можно прочитать на странице «
О блоге ».

Цилиндрические шестерни

Поперечный профиль зуба

Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой. Так как эвольвентное зацепление имеет ряд преимуществ перед остальными: форма этих зубьев соответствует условиям их прочности, зубья легко изготовить и обработать, шестерни не чувствительны к точности установки. Тем не менее, существуют зубчатые передачи с циклоидальной формой профиля зубьев, а так же с шестернями с круговой формой профиля зубьев, например – передача Новикова. Помимо этого, применяется несимметричный профиль зуба, например в храповых механизмах.

Читать также: Бура для пайки состав

Параметры эвольвентной шестерни:

Модуль шестерни ( m

) – это основной параметр, который определяется из прочностного расчёта зубчатых передач. Чем сильнее нагрузка на передачу, тем больше значение модуля, единица измерения модуля – миллиметры.

Расчет модуля шестерни:

— диаметр делительной окружности

— число зубьев шестерни

a — диаметр окружности вершин темной шестерни

b — диаметр основной окружности – эвольвенты

f — диаметр окружности впадин темной шестерни

В машиностроении приняты стандартные значения модуля зубчатого колеса для удобства изготовления и замены зубчатых колёс, представляющие собой числа от 1 до 50.

Высота головки зуба – h

aP и высота ножки зуба –
h
fP в случае, так называемого, «нулевого» зубчатого колеса соотносятся с модулем
m
следующим образом:
h
aP =
m
;
h
fP =
1,2 m
, то есть:

Отсюда получаем, что высота зуба h = 2,2m

Так же можно практически вычислить модуль шестерни, при этом, не имея всех данных для определения модуля, по следующей формуле:

Продольная линия зуба

Прямозубые шестерни

Прямозубые шестерни – самый применяемый тип зубчатых колёс. Зубья расположены в радиальных плоскостях, линия контакта зубьев пары зубчатых колес параллельна оси вращения, как и оси обеих зубчатых колес (шестеренок) располагаются строго параллельно.

Косозубые шестерни

Косозубые шестерни – это модернизированная версия прямозубых шестерен. Зубья, в таком случае, расположены под углом к оси вращения. Зацепление зубьев этих шестерен происходит тише и плавнее, чем у прямозубых. Они применяются либо в малошумных механизмах, либо в тех которые требуют передачи большого крутящего момента на больших скоростях. К недостаткам этого типа шестерен можно отнести: увеличенную площадь соприкосновения зубьев, что вызывает значительное трение и нагрев деталей, а вследствие: потеря мощности и дополнительное использование смазочных материалов; так же механическая сила, направленная вдоль оси шестеренки, вынуждает применять упорные подшипники для установки вала.

Шевронные колёса

Шевронные шестерни решают проблему механической осевой силы, которая возникает в случае применения косозубых колес, так как зубья шевронных (елочных) колёс изготавливаются в виде буквы «V» (или же они образовываются стыковкой двух косозубых колёс со встречным расположением зубьев). Осевые механические силы обеих половин шевронной шестерни взаимно компенсируются, поэтому нет нет необходимости использования упорных подшипников для установки валов. Шевронная передача является самоустанавливающейся в осевом направлении, в следствии чего, в редукторах с шевронными колесами один из валов устанавливают на подшипниках с короткими цилиндрическими роликами – плавающих опорах.

Шестерни с внутренним зацеплением

Шестерни такого типа имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше КПД. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в шестеренных насосах, в приводе башни танка.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные шестерни

Секторная шестерня – это часть (сектор) шестерни любого типа, она позволяет сэкономить в габаритах полноценной шестерни, так как применяется в передачах, где не требуется вращение этого зубчатого колеса (шестеренки) на полный оборот.

Шестерни с круговыми зубьями

Шестерни этого типа имеют линию зубьев в виде окружности радиуса, за счет этого контакт в передаче происходит в одной точке на линии зацепления, которая располагается параллельно осям шестерен. Передачи с круговыми зубьями «Передача Новикова» имеет лучшие ходовые качества, чем косозубые – высокую плавность хода и бесшумность, высокую нагрузочную способность зацепления, но при одинаковых условиях их ресурс работы и КПД ниже, к прочему изготовление этих шестерен значительно сложнее. Поэтому применение таких шестеренок ограниченно.

Источник

Модуль высота зуба таблица

Чтобы нарезать зубчатое колесо, надо знать элементы зубчатого зацепления, т. е. число зубьев, шаг зубьев, высоту и толщину зуба, диаметр делительной окружности и наружный диаметр. Эти элементы показаны на рис. 240.

Читайте также:  Труба электросварная размеры таблица с толщиной трубы

Рассмотрим их последовательно.
В каждом зубчатом колесе различают три окружности и, следовательно, три соответствующих им диаметра:
во-первых, окружность выступов, которая представляет собой наружную окружность заготовки зубчатого колеса; диаметр окружности выступов, или наружный диаметр, обозначается Dе;
во-вторых, делительную окружность, которая представляет собой условную окружность, делящую высоту каждого зуба на две неравные части — верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба; высота головки зуба обозначается h’, высота ножки зуба — ; диаметр делительной окружности обозначается d;
в-третьих, окружность впадин, которая проходит по основанию впадин зуба; диаметр окружности впадин обозначается Di.
Расстояние между одноименными (т. е. обращенными в одну сторону, например двумя правыми или двумя левыми) боковыми поверхностями (профилями) двух смежных зубьев колеса, взятое по дуге делительной окружности, называется шагом и обозначается t. Следовательно, можно записать:

где t — шаг в мм;
d — диаметр делительной окружности;
z — число зубьев.
Модулем m называется длина, приходящаяся по диаметру делительной окружности на один зуб колеса; численно модуль равен отношению диаметра делительной окружности к числу зубьев. Следовательно, можно записать:

Из формулы (10) следует, что шаг

t = πm = 3,14m мм. (9б)

Чтобы узнать шаг зубчатого колеса, надо его модуль умножить на π.
В практике нарезания зубчатых колес наиболее важным является модуль, так как все элементы зуба связаны с велининой модуля.
Высота головки зуба h’ равна модулю m, т. е.

h’ = m. (11)

Высота ножки зуба равна 1,2 модуля, или

= 1,2m. (12)

Высота зуба, или глубина впадины,

h = h’ + = m + 1,2m = 2,2m. (13)

По числу зубьев z зубчатого колеса можно определить диаметр его делительной окружности.

d = z · m. (14)

Наружный диаметр зубчатого колеса равен диаметру делительной окружности плюс высота двух головок зуба, т. е.

De = d + 2h’ = zm + 2m = (z + 2)m. (15)

Следовательно, для определения диаметра заготовки зубчатого колеса надо число его зубьев увеличить на два и полученное число умножить на модуль.
В табл. 16 даны основные зависимости между элементами зубчатого зацепления для цилиндрического колеса.

Пример 13. Определить все размеры, необходимые для изготовления зубчатого колеса, имеющего z = 35 зубьев и m = 3.
Определяем по формуле (15) наружный диаметр, или диаметр заготовки:

De = (z + 2)m = (35 + 2) · 3 = 37 · 3 = 111 мм.

Определяем по формуле (13) высоту зуба, или глубину впадины:

h = 2,2m = 2,2 · 3 = 6,6 мм.

Определяем по формуле (11) высоту головки зуба:

h’ = m = 3 мм.

Зуборезные фрезы

Для фрезерования зубчатых колес на горизонтально-фрезерных станках применяют фасонные дисковые фрезы с профилем, соответствующим впадине между зубьями колеса. Такие фрезы называют зуборезными дисковыми (модульными) фрезами (рис. 241).

Зуборезные дисковые фрезы подбирают в зависимости от модуля и числа зубьев фрезеруемого колеса, так как форма впадины двух колес одного и того же модуля, но с разным числом зубьев неодинакова. Поэтому при нарезании зубчатых колес для каждого числа зубьев и каждого модуля следовало бы иметь свою зуборезную фрезу. В условиях производства с достаточной степенью точности можно пользоваться несколькими фрезами для каждого модуля. Для нарезания более точных зубчатых колес необходимо иметь набор из 15 зуборезных дисковых фрез, для менее точных достаточен набор из 8 зуборезных дисковых фрез (табл 17).

15-штучный набор зуборезных дисковых фрез

Номер фрезы 1 2 3 4
Число зубьев на-
резаемого ко-
леса
12 13 14 15-16 17-18 19-20 21-22
Номер фрезы 5 6 7 8
Число зубьев на-
резаемого ко-
леса
23-25 26-29 30-34 35-41 42-54 55-79 80-134 135
рейка

8-штучный набор зуборезных дисковых фрез

Номер фрезы 1 2 3 4 5 6 7 8
Число зубьев на-
резаемого ко-
леса
12-13 14-16 17-20 21-25 26-34 35-54 55-134 135
рейка

В целях сокращения количества размеров зуборезных фрез в Советском Союзе модули зубчатых колес стандартизованы, т. е. ограничены следующими модулями: 0,3; 0,4; 0,5; 0,6; 0,75; 0,8; 1,0; 1,25; 1,5; 1,75; 2,0; 2,25; 2,50; 3,0; 3,5; 4,0; 4,5; 5,0; 5,5; 6,0; 6,5; 7,0; 8,0; 9,0; 10,0; 11; 12; 13; 14; 15; 16; 18; 20; 22; 24; 26; 28; 30; 33; 36; 39; 42; 45; 50.
На каждой зуборезной дисковой фрезе выбиты все характеризующие ее данные, позволяющие правильно произвести выбор необходимой фрезы.
Зуборезные фрезы изготовляют с затылованными зубьями. Это — дорогой инструмент, поэтому при работе с ним необходимо строго соблюдать режимы резания.

Измерение элементов зуба

Измерение толщины и высоты головки зуба производится зубомером или штангензубомером (рис. 242); устройство его измерительных губок и метод отсчета по нониусу подобны прецизионному штангенциркулю с точностью 0,02 мм.

Величина А, на которую следует установить ножку 2 зубомера, будет:

А = h’ · а = m · а мм, (16)

где m — модуль измеряемого колеса.
Коэффициент а всегда больше единицы, так как высота головки зуба h’ измеряется по дуге начальной окружности, а величина А измеряется по хорде начальной окружности.
Величина В, на которую следует установить губки 1 и 3 зубомера, будет:

В = m · b мм, (17)

где m — модуль измеряемого колеса.
Коэффициент b учитывает, что размер В — это размер хорды по начальной окружности, в то время как ширина зуба равна длине дуги начальной окружности.
Значения а и b даны в табл. 18.
Так как точность отсчета штангензубомера составляет 0,02 мм, то у полученных по формулам (16) и (17) величин отбрасываем третий десятичный знак и округляем до четных значений.

Значения a и b для установки штангензубомера

Число зубьев
измеряемого
колеса
Значения коэффициентов Число зубьев
измеряемого
колеса
Значения коэффициентов
a b a b
12 1,0513 1,5663 27 1,0228 1,5698
13 1,0473 1,5669 28 1,0221 1,5699
14 1,0441 1,5674 29 1,0212 1,5700
15 1,0411 1,5679 30 1,0206 1,5700
16 1,0385 1,5682 31-32 1,0192 1,5701
17 1,0363 1,5685 33-34 1,0182 1,5702
18 1,0342 1,5688 35 1,0176 1,5702
19 1,0324 1,5690 36 1,0171 1,5703
20 1,0308 1,5692 37-38 1,0162 1,5703
21 1,0293 1,5693 39-40 1,0154 1,5704
22 1,0281 1,5694 41-42 1,0146 1,5704
23 1,0268 1,5695 43-44 1,0141 1,5704
24 1,0257 1,5696 45 1,0137 1,5704
25 1,0246 1,5697 46 1,0134 1,5705
26 1,0237 1,5697 47-48 1,0128 1,5706
49-50 1,023 1,5707 71-80 1,0077 1,5708
51-55 1,0112 1,5707 81-127 1,0063 1,5708
56-60 1,0103 1,5708 128-135 1,0046 1,5708
61-70 1,0088 1,5708 Рейка 1,0000 1,5708

Пример 14. Установить зубомер для проверки размеров зуба колеса с модулем 5 и числом зубьев 20.
По формулам (16) и (17) и табл. 18 имеем:
А = m · а = 5 · 1,0308 = 5,154 или, округленно, 5,16 мм;
В = m · b = 5 · 1,5692 = 7,846 или, округленно, 7,84 мм.

Источник

Adblock
detector