Меню

Методы микробиологического исследования таблица

Подготовка к микробиологическим исследованиям

Правила подготовки к некоторым микробиологическим исследованиям включены в соответствующие разделы (исследования мочи, кала, спермы). Для всех микробиологических исследований рекомендуется прекращение применения антибактериальных препаратов за 7-10 дней до взятия материала.

Микробиологические исследования отделяемого половых органов

В течение 1 месяца перед исследованием пациенты не должны принимать антибиотики. У женщин взятие биологического материала лучше всего проводить не ранее чем через 5 дней после окончания менструации. Перед взятием материала пациентам рекомендуется воздержаться от мочеиспускания в течение 1,5-2 часов. При наличии гнойных выделений соскоб рекомендуется брать через 15-20 мин после мочеиспускания.
У мужчин исследование проводится утром до мочеиспускания или пациентам рекомендуется не мочиться в течение 2-4 часов до взятия пробы.

Посев грудного молока

Перед сбором материала грудь помыть теплой водой с мылом, вытереть чистым полотенцем, тщательно обработать соски и околососковую область молочных желез ватным тампоном, смоченным 70% этиловым спиртом (каждая железа обрабатывается отдельным тампоном).
Первые 10-15 мл сцеженного молока для анализа не используются.

Последующие 3-4 мл молока собираются из каждой груди в отдельный стерильный контейнер (подписать – правая и левая). Материал доставить в лабораторию в течение 2-х часов после сбора.

Сбор секрета предстательной железы на посев

Секрет простаты получают в процессе энергичного массажа предстательной железы врачом-урологом. Материал собирается в стерильный контейнер после туалета наружного отверстия мочеиспускательного канала теплой водой с мылом.

Исследование мазка из зева

Мазок из зева берется строго натощак, перед исследованием за 3 часа нельзя принимать пищу, чистить зубы, полоскать рот водой, пить. При проведении исследования на дифтерию берутся два мазка: из зева и носа.

Источник



Лекция №4. Микробиологические методы исследования.

Объект изучения медицинских микробиологических лабораторий — патогенные биологические агенты (ПБА) — патогенные для человека микроорганизмы (вирусы, бактерии, грибы, простейшие), генно-инженерно модифицированные микроорганизмы, яды биологического происхождения (токсины), гельминты, а также материал (включая кровь, биологические жидкости и экскременты организма человека), подозрительный на содержание ПБА.

В зависимости от выполняемых исследований, микробиологические лаборатории подразделяют на диагностические, производственные и научно-исследовательские. В соответствии с типами микроорганизмов, изучаемых в микробиологических лабораториях, выделяют:

С возбудителями инфекционных заболеваний работают только в специализированных микробиологических лабораториях, обеспечивающих безопасность её персонала и невозможность «утечки» патогенных микроорганизмов за пределы лаборатории.

Регламентация условий работы с возбудителями инфекционных заболеваний произведена в соответствии со степенью опасности микроорганизмов для человека. По этому признаку выделено четыре группы возбудителей инфекционных заболеваний.

Группа I возбудителей инфекционных заболеваний: возбудители особо опасных инфекций: чума, натуральная оспа, лихорадки Ласса, Эбола и др.

Группа II возбудителей инфекционных заболеваний: возбудители высококонтагиозных бактериальных грибковых и вирусных инфекций: сибирская язва, холера, лихорадка Скалистых гор, сыпной тиф, бластомикоз, бешенство и др. В эту группу также включён ботулотоксин (но не сам возбудитель ботулизма).

Группа III возбудителей инфекционных заболеваний: возбудители бактериальных грибковых, вирусных и протозойных инфекций, выделенных в отдельные нозологические формы (возбудители коклюша, столбняка, ботулизма, туберкулёза, кандидоза, малярии, лейшманиоза, гриппа, полиомиелита и др.). В эту группу также включены аттенуированные штаммы бактерий групп I, II и III.

Группа IV возбудителей инфекционных заболеваний: возбудители бактериальных, вирусных, грибковых септицемии, менингитов, пневмоний, энтеритов, токсикоинфекций и острых отравлений (возбудители анаэробных газовых инфекций, синегнойной инфекции, аспергиллеза, амебиаза, аденовирусы, герпесвирусы и др.)

В зависимости от уровня безопасности работы с микроорганизмами микробиологические лаборатории подразделяют на четыре группы риска.

Первая группа риска микробиологических лабораторий: лаборатории особого режима (максимально изолированные) с высоким индивидуальным и общественным риском.

Вторая группа риска микробиологических лабораторий: режимные лаборатории (изолированные) с высоким индивидуальным и низким общественным риском.

Третья группа риска микробиологических лабораторий: базовые (основные) лаборатории с умеренным индивидуальным и ограниченным общественным риском.

Четвёртая группа риска микробиологических лабораторий: базовые (основные) лаборатории с низким индивидуальным и общественным риском.

В системе Министерства здравоохранения и Государственного комитета санитарно-эпидемиологического надзора РФ наиболее разветвлена сеть бактериологических лабораторий. В соответствии с выполняемыми задачами выделяют;

• бактериологические лаборатории в составе ЛПУ;

• бактериологические лаборатории в составе комитетов Госсанэпиднадзора;

• учебные бактериологические лаборатории вузов;

• проблемные и отраслевые бактериологические лаборатории научно-исследовательских институтов и предприятий по выпуску бактерийных препаратов;

• специализированные бактериологические лаборатории по контролю за особо опасными инфекциями;

• специализированные бактериологические лаборатории по контролю за отдельными группами бактерий: микобактериями, риккетсиями, лептоспирами и др. Большая часть микробиологических лабораторий работает с ПБА групп III и IV, а изучением возбудителей особо опасных инфекций (группы I и II) занимаются только специализированные лаборатории.

Работу с патогенными биологическими агентами ( ПБА ) групп III и IV выполняют специалисты с высшим и средним специальным образованием. К ней допускают сотрудников, прошедших инструктаж по соблюдению требований безопасности работы с ПБА; последующий инструктаж следует проводить не реже одного раза в год. Все сотрудники, работающие с патогенными биологическими агентами ( ПБА ), должны находиться на диспансерном учёте. Приборы, оборудование и средства измерения должны быть аттестованы, технически исправны и иметь технический паспорт. Их метрологический контроль и техническое освидетельствование следует проводить в установленные сроки.

Из правил работы в грязной зоне базовой микробиологической лаборатории: Перед работой в микробиологической лаборатории следует проверить качество посуды, пипеток, шприцев и другого оборудования. При пипетировании необходимо пользоваться только резиновыми грушами или автоматическими устройствами. Строго запрещено пипетировать материал ртом, переливать его через край сосуда (пробирки, колбы), а также оставлять без надзора рабочее место во время выполнения любых работ с патогенными биологическими агентами ( ПБА ). В грязной зоне микробиологической лаборатории запрещается курить, пить воду, хранить верхнюю одежду, головные уборы, обувь, пищевые продукты. В помещения зоны нельзя приводить детей и домашних животных. Окончание работы в микробиологической лаборатории После окончания работы в микробиологической лаборатории все объекты, содержащие ПБА, должны быть убраны в хранилища (холодильники, термостаты, шкафы) с обязательной дезинфекцией столов. Использованные пипетки полностью (вертикально) погружают в дезинфицирующий раствор, избегая образования пузырьков в каналах. Остатки ПБА, использованную посуду и оборудование собирают в закрывающиеся ёмкости и передают в автоклавную. Категорически запрещено сливать отходы с патогенными биологическими агентами ( ПБА ) в канализацию без предварительного обеззараживания. После окончания работы с патогенными биологическими агентами ( ПБА ) и заражёнными животными, а также после ухода из лаборатории следует тщательно вымыть руки.

Цель микробиологических исследований — установить факт наличия или отсутствия возбудителя в организме больного и на объектах окружающей среды (индефецировать)

Задачи микробиологических исследований — идентифицировать микроорганизмы в исследуемом материале, определить их видовую принадлежность, морфологические, биохимические, токсигенные и антигенные свойства, а также установить чувствительность выделенных микроорганизмов к антимикробным препаратам. Несмотря на то что проведение микробиологических исследований относится к компетенции микробиологов, каждый медицинский работник, имеющий дело с инфекционными заболеваниями, должен знать, как и когда необходимо отбирать материал для исследований, на какие исследования его направлять и как интерпретировать полученные результаты.

Читайте также:  Гомологичные органы и аналогичные органы примеры таблица егэ

Первый этап любого микробиологического исследования составляет правильный выбор материала для исследования. Его определяют свойства возбудителя и патогенез вызываемого им заболевания. При поражениях отдельных органов и систем целесообразно отбирать материал соответствующей локализации. При отсутствии поражений исследуют кровь, а затем отбирают образцы с учётом клинической картины заболевания и доступности материала для исследования. Так, при лихорадке неясного генеза первоначально проводят посев крови; затем, при появлении симптомов более конкретных проявлений, например пневмонии, проводят забор мокроты.

• Образцы материала для микробиологического исследования следует забирать до назначения антимикробной терапии, с соблюдением правил асептики для предупреждения загрязнения материала. Каждый образец следует рассматривать как потенциально опасный. При заборе, транспортировке, хранении и работе с ним необходимо соблюдать правила биологической безопасности. Материал собирают в объёме, достаточном для всего комплекса исследований. Микробиологические исследования следует начинать немедленно после поступления образца в лабораторию.

• Выбор материала для микробиологического исследования должен соответствовать характеру инфекционного процесса. Так, например, при установлении этиологии пневмонии материалом должна быть мокрота, а не слюна, а при раневых инфекциях отделяемое следует забирать из глубины раны, а не с её поверхности.

Виды микробиологических исследований.

Основу микробиологической диагностики инфекционных заболеваний составляют микроскопические, микробиологические, биологические, серологические и аллергологические методы.

Микроскопические методы исследований включают приготовление мазков и препаратов для микроскопирования. В большинстве случаев результаты микроскопических исследований носят ориентировочный характер (например, определяют отношение возбудителей к окраске), так как многие микроорганизмы лишены морфологических и тинкториальных (особенности окрашивания) особенностей. Тем не менее микроскопией материала можно определить некоторые морфологические признаки возбудителей (наличие ядер, жгутиков, внутриклеточных включений и т.д.), а также установить факт наличия или отсутствия микроорганизмов в присланных образцах.

Микробиологические методы исследований — «золотой стандарт» микробиологической диагностики, так как результаты микробиологических исследований позволяют точно установить факт наличия возбудителя в исследуемом материале. Идентификацию чистых культур (до вида микроорганизма) проводят с учётом морфологических, тинкториальных, культуральных, биохимических, токситенных и антигенных свойств микроорганизма. Большинство исследований включает определение чувствительности к антимикробным препаратам у выделенного возбудителя. Для эпидемиологической оценки роли микроорганизма проводят внутривидовую идентификацию определением фаговаров, биоваров, резистентваров и т.д.

Биологические методы исследований направлены на определение наличия токсинов возбудителя в исследуемом материале и на обнаружение возбудителя (особенно при незначительном исходном содержании в исследуемом образце). Методы включают заражение лабораторных животных исследуемым материалом с последующим выделением чистой культуры патогена либо установлением факта присутствия микробного токсина и его природы. Моделирование экспериментальных инфекций у чувствительных животных — важный инструмент изучения патогенеза заболевания и характера взаимодействий внутри системы микроорганизм-макроорганизм. Для проведения биологических проб используют только здоровых животных определённых массы тела и возраста. Инфекционный материал вводят внутрь, в дыхательные пути, внутрибрюшинно, внутривенно, внутримышечно, внутрикожно и подкожно, в переднюю камеру глаза, через трепанационное отверстие черепа, субокципитально (в большую цистерну головного мозга). У животных прижизненно забирают кровь, экссудат из брюшины, после гибели — кровь, кусочки различных органов, СМЖ, экссудат из различных полостей.

Серологические методы исследований выявления специфических AT и Аг возбудителя — важный инструмент в диагностике инфекционных заболеваний. Особую ценность они имеют в тех случаях, когда выделить возбудитель не представляется возможным. При этом необходимо выявить повышение титров AT, в связи с чем исследуют парные образцы сыворотки, взятые в интервале 10-20 сут (иногда этот интервал может быть более длительным). AT обычно появляются в крови на 1-2-ю неделю заболевания и циркулируют в организме относительно долго, что позволяет использовать их выявление для ретроспективных эпидемиологических исследований. Определение классов Ig чётко характеризует этапы инфекционного процесса, а также может служить косвенным прогностическим критерием, Особое значение имеют методы выявления микробных Аг. В значимых количествах они появляются уже на самых ранних сроках, что делает их идентификацию важным инструментом экспресс-диагностики инфекционных заболеваний, а количественное их определение в динамике инфекционного процесса служит критерием эффективности проводимой антимикробной терапии.

Аллергологические методы исследования Антигены многих возбудителей обладают сенсибилизирующим действием, что используют для диагностики инфекционных заболеваний, а также при проведении эпидемиологических исследований. Наибольшее распространение нашли кожно-аллергические пробы, включающие внутри-кожное введение Аг (аллергена) с развитием реакции ГЗТ. Кожные пробы нашли применение в диагностике таких заболеваний как сап, мелиоидоз, бруцеллёз. Наиболее известна проба Манту, используемая как для диагностики туберкулёза, так и для оценки невосприимчивости организма к возбудителю.

Источник

Статьи

Микробиологический контроль

Задачей микробиолгического контроля является оценка качества, определение соответствия показателям безопасности продуктов, а также выявление микробиологических загрязнений в объектах исследования, которые можно разделить на 2 группы:

  1. фармакологическая продукция (лекарственные средства, биологические добавки и пр. );
  2. все остальное (разного рода готовая продукция, сырье, технические приборы, воздух, вода, рабочий персонал и пр.).

Для успешного осуществления микробиологического контроля качества продуктов необходимо иметь высококачественное, точное оборудование, которое готова предложить компания «БиоВитрум».

Санитарно-показательные микроорганизмы

Присутствие или отсутствие санитарно–показательных микроорганизмов указывает на загрязнение или стерильность объекта микробиологического исследования, который считается чистым, если в его составе или на его поверхности не обнаружено следующих микробов:

  • кишечной палочки;
  • гемолитических стрептококков;
  • гемолитических стафилококков.

В процессе микробиологического контроля продуктов ведется учет вышеперечисленных патогенных организмов, однако их число в различных местах обитания существенно разнится. Связано это с тем, что патогенные микроорганизмы предпочитают обитать в среде, подверженной эпидемической вспышке. Поэтому возможное загрязнение выявляют с помощью индикаторных микроорганизмов, которые соответствуют следующим критериям:

  • наличие общей среды обитания и метода распространения с патогенными микробами;
  • высокая жизнеспособность в сравнении с патогенными микроорганизмами;
  • простой способ определения.

В результате многолетних исследований в различных странах в качестве индикатора загрязнения воды, продуктов питания, оборудования и персонала используют бактерии группы кишечной палочки. Чистоту воздуха определяют с помощью таких индикаторных микроорганизмов, как гемолитические стафилококки. Для оценки загрязнения почвы применяют грамположительные споровые палочки – Clostridium perfringens и Clostridium sporogenes.

Иногда выделить патогенные микроорганизмы становится сложно, что обусловлено рядом причин:

  • доля патогенов во всей микрофлоре продуктов ничтожно мала (1/30000 часть);
  • быстрая адаптация патологических организмов к условиям окружающей среды;
  • патогены способны размножаться только на специальных культурах тканей и клеток.

Чтобы микробиологическое исследование продуктов было успешным и результативным, необходимо проводить его с использованием качественного и надежного оборудования, которое можно приобрести в нашей компании.

1. Микробиологический контроль объектов I группы

1.1 Правила проведения микробиологического контроля продуктов

При производстве объектов фармакологической группы должен выполняться микробиологический контроль не только готовой продукции, но и объектов окружающей среды. При этом должны быть соблюдены следующие правила:

  • процесс микробиологического контроля продуктов должен быть осуществлен в соответствии с Приказом Минздрава РФ от 24.04.2003 N172;
  • нестерильные лекарственные препараты подвержены возможности их контаминирования и могут содержать определенное число микроорганизмов, не несущих вреда здоровью человека;
  • при проведении испытаний на стерильность должны быть соблюдены условия, исключающие инфекционное заражение.
Читайте также:  Великая английская буржуазная революция таблица

1.2 Методы микробиологических исследований продуктов

1. Испытание на стерильность

Некоторые категории лекарственных средств (глазные капли, растворы для инъекций и др.) должны быть полностью стерильными. Однако, метод контроля стерильности используют для проверки всех фармакологических препаратов. Происходит это следующим образом:

  • а) Выявление антимикробных свойств препарата. Процесс заключается в помещении тестируемых микроорганизмов на питательную среду, и при обнаружении антимикробных свойств в объект исследования вносят специальные инактиваторы, перечень которых указан в соответствующих нормативных документах.
  • б) Испытание на стерильность.

Исследуемые микроорганизмы продуктов помещают в различные виды жидкой среды, чтобы определить наличие аэробных и анаэробных бактерий, а также грибов.

2. Метод мембранной фильтрации

Данный метод микробиологического контроля продуктов заключается в исследовании организмов с применением специальной фильтрационной установки.

  • а) Подготовка проб. Пробное количество клеток помещают на фильтр и воздействуют на них давлением или вакуумом.
  • б) Валидация.

После осуществления фильтрации производят выявление роста микроорганизмов в исследуемой массе. В случае, если произошло размножение клеток, делают вывод о том, что изучаемый объект не обладает антимикробными свойствами.

3. Метод прямого посева

Используя данный метод, наличие бактерий определяют путем посева микроорганизмов на питательные среды.

2. Микробиологический контроль объектов II группы

2. 1 Правила и порядок проведения микробиологического контроля продуктов

Для того, чтобы добиться точных результатов микробиологического исследования продуктов, необходимо проводить его с соблюдением следующих правил:

  • в процессе отбора исследуемых образцов нужно следовать рекомендациям, исключающим возможность заражения;
  • необходимо учитывать место и время, при которых был произведен забор образцового материала для анализа. От внешних факторов напрямую зависит численность микроорганизмов;
  • следует строго соблюдать временной период, в течение которого должно быть проведено исследование (либо немедленно после сбора материала, либо через 12 – 24 часа, сохраняясь в холодильной камере);
  • сопоставлять результаты микробиологического исследования, полученные из разных лабораторий, нужно только теми методами, которые указаны в соответствующих ГОСТах;
  • при осуществлении микробиологического исследования необходимо использовать комплексный подход (использовать все методы контроля);
  • при анализе как природных, так и искусственно созданных объектов, следует учитывать их физико – химические свойства.

Для выпуска качественных продуктов и оказания услуг высокого уровня необходим систематический биологический контроль на всех этапах деятельности и производства, который выполняется следующим образом:

  1. Забор микроорганизмов из среды производства.
  2. Посев (при необходимости).
  3. Сбор результатов.
  4. Анализ собранных данных.

В зависимости от сферы производства или деятельности, микробиологичсекому контролю продуктов могут подлежать следующие объекты:

  • вода (например, выращивание рыбы в искусственных водоемах);
  • воздух в производственных помещениях;
  • продукты питания;
  • техническое оборудование;
  • инвентарь;
  • рабочий персонал (чистота рук, рабочей одежды и пр.).

Микробиологический контроль продуктов могут осуществлять как собственные лаборатории предприятий, так и санэпидемстанции.

2.2 Методы микробиологических исследований

Методы микробиологического контроля продуктов направлены на выполнение двух задач:

  1. определение общего числа микробов и патогенов в исследуемой пробе;
  2. определение уровня загрязненности исследуемой пробы.

В микробиологии применяют два метода исследований для осуществления микробиологического контроля:

1. Прямой

Этот метод основан на использовании красителя (эритрозина), вводимого в исследуемый образец для вычисления количества патогенных микроорганизмов, учет которых проводится под камерами Петрова или с помощью электронных счетчиков. Прямой метод микробиологического контроля является самым точным, быстрым и надежным. Его удобно использовать в экстренных ситуациях (например, при аварии на линии водоснабжения), так как данный метод позволяет срочно выявить количество патологических организмов в тестируемом материале продукта.

Кроме достоинств, прямой метод микробиологического исследования продуктов имеет ряд недостатков. Среди них можно отметить следующие:

  • низкий уровень чувствительности и, как следствие, невозможность определить, являются ли патогенные клетки живыми или мертвыми;
  • нет возможности обнаружить субмикроскопические организмы;
  • результат исследования будет не точным в случае, если в исследуемых образцах будут находиться какие – либо примеси, загрязняющие объект изучения.

2. Косвенный

Данный метод заключается в определении общего числа микробов и санитарно–показательных микроорганизмов в продуктах. Хоть и опосредованно, но косвенный метод микробиологического контроля позволяет дать точный результат о наличии или отсутствии патогенных микроорганизмов, а также возможных угрозах для человека.

Общее микробное число предоставляет сведения о количестве жизнеспособных организмов, находящихся в 1 г или 1 мл исследуемого материала. Считается, что чем большее число общих микроорганизмов было обнаружено, тем выше вероятность наличия патогенных клеток.

Санитарно – показательные микроорганизмы позволяют оценить степень загрязнения объекта исследования фекалиями и выражаются в мл или г.

Оборудование для микробиологического контроля качества продуктов

При осуществлении микробиологических исследований используют следующее оборудование:

  1. Ламинарный бокс (для очищения воздуха от пыли и других микрочастиц);
  2. Аналитические и лабораторные весы;
  3. Гомогенизаторы (для измельчения исследуемых масс);
  4. рН-метр;
  5. Автоклав (для стерилизации инвентаря и обеззараживания отходов);
  6. Термостат (для поддержания необходимого температурного режима в помещении);
  7. Холодильная камера (для хранения исследуемых организмов, реактивов и пр.);
  8. Водяная баня (для поддержания температурного режима и влажности);
  9. Сушильный шкаф;
  10. СО2-инкубатор (для исключения возможности появления новых микроорганизмов);
  11. Дистиллятор (для очистки воды);
  12. Микроскоп;
  13. Фильтрационная установка;
  14. Аспиратор (для забора воздушных масс);
  15. Вспомогательные инструменты (лабораторная посуда, дозаторы, мешалки и пр.).

Микробиологический контроль качества в продуктах – необходимая и неотъемлемая часть жизни человека. Без качественного, профессионального оборудования невозможно успешное проведение исследований и получение точных результатов. Компания «БиоВитрум» является ведущим производителем и поставщиком микробиологических приборов и необходимых компонентов и гарантирует надежность и качество своей продукции.

Ознакомиться с ассортиментом оборудования для микробиологии Вы можете здесь >>>.

Источник

Методы исследования в микробиологии

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический — изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

Микробиологический — (бактериологический, культурный) — посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура — скопление микробов одною вида, выращенных на питательной среде. Штамм — чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон — генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

Читайте также:  Полномочия органов государственной власти органы государственной власти таблица

Экспериментальный (биологический) — заражение микробами лабораторных животных. Метод позволяет:

выделить чистую культуру микробов, плохо растущих на питательных средах;

изучить болезнетворные свойства микроба;

получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) — изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы — антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Морфология и физиология микробов микроскопический метод исследования

Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой («иммерсио» — погружение) В состав иммер­сионной системы входит иммерсионный объектив (х 90 ) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку по­казатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необ­ходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы «сухой системы» не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в ок­рашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клет­ки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно круп­ных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х 40 или х 8 ) Для микроскопии готовят препараты «раздавленная капля» или «висячая капля».

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10 -6 м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в оку­ляр прозрачную линейку).

Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп имеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть от­раженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнополъную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате «раздавленная капля».

Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличие от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участ­ков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изо­бражения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении ко­ротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с «сухой» или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цвет­ное изображение, обнаружить малое количество микробов, изучить их структуру и химический со­став, использовать метод иммунофлюоресценции.

Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей спо­собностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стек­лянных оптических — электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Приготовление препарата для микроскопического исследования

Окраска по Граму.

1 этап — приготовление мазка.

Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокален­ной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия (ИХН). Затем в эту каплю вносят небольшое количество культуры бактерий, тща­тельно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных куль­тур готовят без предварительного нанесения ИХН.

2 этап — высушивание.

Стекло оставляют на воздухе до исчезновения влаги.

3 этап — фиксация.

Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накла­дывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон, смесь Никифоро­ва). Такая фиксация позволяет избежать грубых деформаций объекта исследования.

4 этап — окраска.

Различают простые и сложные (дифференцирующие) способы окраски. Простые способы по­зволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные спо­собы позволяют установить структуру микробов и часто их неодинаковое отношение к красите­лям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристаллвиолетом (3-5 минут), а сложных — окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.

Дифференцирующий метод Грача

После окраски этим методом одни бактерии, окрашиваются в темно-фиолетовый цвет (грамположительные, Гр+). другие — в бордово-красный (грамотрицательные, Гр-). Сущность этого способа окраски состоит в том, что Гр+ бактерии прочно фиксируют комплекс из генцианвиолета и йода, не обесцвечиваясь этанолом. Гр- бактерии после обесцвечивания докрашивают фуксином.

Гр + бактерии кокки

Гр — бактерии кокки

стафилококки, стрептококки; палочки (споро-образующие): бациллы, клостридии; папочки (неспорообразующие): коринебактерии, микобактерии, актиномицеты

нейссерии, вейллонеллы; палочки (неснорообразующие): энтеробактерии, вибрионы; извитые: спириллы, спирохеты, кампилобактерии.

Источник

Adblock
detector