Меню

Математическая модель может быть таблица



Математическая модель

  • Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Процесс построения и изучения математических моделей называется математическим моделированием.

Все естественные и общественные науки, использующие математический аппарат, по сути, занимаются математическим моделированием: заменяют объект исследования его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект или процесс, построенный на этапе содержательного моделирования. Математическая модель позволяет предсказать поведение реального объекта.

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.

Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.

Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на.

Источник

Создание простых математических моделей с помощью электронных таблиц
материал по информатике и икт по теме

Мальчук Светлана Викторовна

Создание простых математических моделей с помощью электронных таблиц

Скачать:

Вложение Размер
rabota.doc 680 КБ

Предварительный просмотр:

математических моделей с

помощью электронных таблиц

Мальчук Светлана Викторовна

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ

1.1. Классификация моделей.

1.2. Математические модели.

1.3. Основные этапы моделирования.

2. СОЗДАНИЕ ПРОСТЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ

2.1. Общая характеристика электронных таблиц.

2.2. Исследование математических моделей в электронных таблицах.

Человек издавна использует моделирование для исследования объектов, процессов, явлений в различных областях. Результаты этих исследований служат для определения и улучшения характеристик реальных объектов и процессов; для понимания сути явлений и выработки умения приспосабливаться или управлять ими; для конструирования новых объектов или модернизации старых. Моделирование помогает человеку принимать обоснованные и продуманные решения, предвидеть последствия своей деятельности.

Применение компьютера в качестве нового динамичного, развивающего средства обучения — главная отличительная особенность компьютерного моделирования. Для осуществления математических расчётов и моделирования, как в практической, так и в научной деятельности, используются различные компьютерные программы. Наиболее широко распространены электронные таблицы и такие программы для работы с ними, как MS Excel и OpenOffice.org Calc. Данные программы являются многофункциональными и в то же время довольно простыми для изучения. Хотя на самом деле, в данных программ легко начать работать, а уметь использовать все возможности не так просто. Поэтому целью данной работы является изучение теоретических основ информационного моделирования, создание различных математических моделей и исследование их поведения с помощью электронных таблиц. Исходя из цели работы, были определены следующие задачи:

— Определить понятие модели и познакомиться с основными типами информационных моделей.

— Рассмотреть математические модели объектов или процессов

— Исследовать основные возможности программ MS Excel и OpenOffice.org Calc;

— Строить компьютерные модели в среде электронных таблиц.

  1. 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель — это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. [2]

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.[2]

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно, формализация — это замена реального объекта или процесса его формальным описанием.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность.[5]

1.1. Классификация моделей.

Границы между моделями различных типов или классов, а также отнесение модели к какому-то типу или классу чаще всего условны. Рассмотрим наиболее распространенные признаки, по которым классифицируются модели.

1) Классификация моделей по области использования:

Учебные модели – используются при обучении.

Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик.

Научно-технические — создаются для исследования процессов и явлений.

Игровые – репетиция поведения объекта в различных условиях

Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок).

2) Классификация моделей по фактору времени:

Статические — модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных, строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд..

Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

3) Классификация моделей по отрасли знаний — это классификация по отрасли деятельности человека:

Математические, биологические, химические, социальные, экономические, исторические и т.д..

4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты

Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. Это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные и вербальные; информационные.

Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.

Вербальные – мысленные модели, выраженные в разговорной форме. Используются для передачи мыслей.

Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта.

По степени формализации информационные модели бывают:

Образно-знаковые : геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение); структурные (таблица, граф, схема, диаграмма); словесные (описание естественными языками); алгоритмические (нумерованный список, пошаговое перечисление, блок-схема).

Знаковые модели: математические – представлены математическими формулами, отображающими связь параметров; специальные – представлены на спец. языках (ноты, химические формулы); алгоритмические – программы.[2]

1.2. Математические модели.

Широко распространенным видом моделирования является математическое моделирование. Математическая модель отражает существенные свойства объекта или процесса языком уравнений и других математических средств. Математическое моделирование стало чрезвычайно мощным средством познания в естественных, технических и социальных науках, экономике, многих видах практической деятельности, и заслуживает углубленного изучения.

Нужно отметить, что математическое моделирование, являющееся основой компьютерного моделирования, появилось задолго до создания компьютеров. Однако возможности компьютеров позволили ученым моделировать сложные динамические явления природы, а также сложные экономические и социальные процессы. Цель создания компьютерной математической модели — проведение численного эксперимента, позволяющего исследовать моделируемую систему, спрогнозировать ее поведение, подобрать оптимальные параметры и пр.[7]

Характерные признаки компьютерной математической модели:

• наличие реального объекта моделирования;

• наличие количественных характеристик объекта: входных и выходных параметров;

• наличие математической связи между входными и выходными параметрами;

• реализация модели с помощью определенных компьютерных средств.

1.3. Основные этапы моделирования.

Моделирование — творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно в следующем виде.

рис. 1 Этапы моделирования

Каждый раз при решении конкретной задачи такая схема может подвергаться некоторым изменениям: какой-то блок может быть убран или усовершенствован. Все этапы определяются поставленной задачей и целями моделирования.[3]

I этап. Постановка задачи

Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное — определить объект моделирования и понять, что собой должен представлять результат.

По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть “что будет, если. ”. Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется “как сделать, чтобы. ”.

Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи.

Далее переходят к описанию объекта или процесса. Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть.

При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система — надо перейти к анализу объектов, ее составляющих, определить связи между ними.

II этап. Разработка модели

По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи.

Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую . На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся “вручную”. Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц.

III этап. Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т.е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется.

IV этап. Анализ результатов моделирования

Заключительный этап моделирования — анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса.[4]

  1. 2. СОЗДАНИЕ ПРОСТЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ

Электронные таблицы (или табличные процессоры) — это прикладные программы, предназначенные для проведения табличных расчётов. Данное средство информационных технологий, позволяет решать целый комплекс задач, и прежде всего, выполнение вычислений. Многие расчёты выполняются в табличной форме, особенно в области делопроизводства: многочисленные расчётные ведомости, сметы расходов и т. д. Кроме того, в табличной форме удобно выполнять решение численными методами целого ряда математических задач. Электронные таблицы (ЭТ) являются удобным инструментом для автоматизации таких вычислений. Решения многих вычислительных задач на ЭВМ, которые раньше можно было осуществить только путём программирования, стало возможным осуществлять с помощью электронных таблиц. Использование математических формул в ЭТ позволяет представить взаимосвязь между различными параметрами некоторой реальной системы. Основное свойство ЭТ — мгновенный пересчёт значений рассчитываемых показателей при изменении входящих данных. Благодаря этому свойству, таблица представляет собой удобный инструмент для организации численного эксперимента.[7]

Дополнительные удобства для моделирования даёт возможность графического представления данных (диаграммы), а также возможность использования электронной таблицы в качестве базы данных. Электронные таблицы просты в обращении, значительно упрощают и ускоряют работу.

2.1. Общая характеристика электронных таблиц.

В настоящее время наиболее распространённая программа для работы с электронными таблицами — MS Excel, которая является составной частью пакета MS Office. Широкое распространение получил и пакет OpenOffice.org, в том числе и его составляющая для работы с электронными таблицами Calc. Данные пакеты программ, в том числе и для работы с электронными таблицами, имеют схожие возможности. [1]

Электронная таблица в MS Excel и OpenOffice.org Calc (рабочий лист) — это множество элементарных ячеек, каждая из которых имеет адрес, определяемый координатами по вертикали (столбцы) и горизонтали (строки). Столбцы рабочего листа именуются, а строки нумеруются. (рис.2)

Каждый документ в MS Excel называется рабочей книгой и состоит из нескольких рабочих листов. Книга в MS Excel представляет собой файл с расширением .xls (и xlsx в версии 2007 года), предназначенный для хранения и обработки данных. В OpenOffice.org Calc рабочие книги можно сохранять в виде файлов с различными расширениями (основным расширением файла является .ods). Данная программа открывает файлы созданные в MS Excel (с расширениями .xls и .xlsx) и возможно сохранение файлов с расширением .xls, то есть такие файлы можно открывать и редактировать в MS Excel. В свою очередь, файлы с расширением .ods в программе MS Excel открывать и редактировать нельзя. [6].

Рис. 2 Внешний вид главного окна OOCalc

Для ввода данных в программах MS Excel и OpenOffice.org Calc нужно выбрать ячейку и ввести то, что требуется. Набираемые данные отображаются в ячейке и в строке ввода, которая особенно полезна с учётом того, что ячейка может содержать больше символов, чем позволяет отобразить её текущая ширина. В ячейку можно вводить числовые значения, текст, а также дату и время. Причём можно выбирать формат ячеек (числовой, текстовой, формат даты и времени). Если текст начинается со знака «=», то он не отображается в ячейке, поскольку эти программы считают такой текст формулой. Если нужно напечатать текст, начинающийся со знака «=», то необходимо самым первым символом поставить знак одинарной кавычки. Если есть необходимость начать строку со знака кавычки, то необходимо напечатать кавычку два раза.

Основными возможностями программ MS Excel и OpenOffice.org Calc являются: вычисления с помощью формул, вводимых в ячейки; использование встроенных функций, построение диаграмм и графиков.[1]

В OOCalc и MS Excel доступны следующие основные арифметические операции:

«^» – возведение в степень;

Кроме этих операций, в этих программах доступен обширный набор функций следующих категорий:

Источник

Урок 32 Математическое моделирование с использованием электронных таблиц Имитационные модели

Содержание урока

Электронные таблицы и математическое моделирование. Математическое моделирование

Электронные таблицы и математическое моделирование
Математическое моделирование

Основные темы параграфа:

— математическое моделирование;
— этапы математического моделирования на компьютере;
— пример математического моделирования в электронных таблицах.

Математическое моделирование

Что такое компьютерное математическое моделирование?

Снова вернемся к теме математического моделирования, обсуждение которой было начато на уроках:

Реальную систему, для которой создается ми тематическая модель, принято называть объектом моделирования Объектами математического моделирования могут быть некоторые конструкции, например, железнодорожный мост или корабль; при родные объекты, например, месторождение полезных ископаемых водохранилище, а также процессы и явления, происходящие во времени, например, взлет космической ракеты с космодрома, изменение погодных условий в определенной географической точке, изменение со временем численности определенных популяций.

Для людей могут оказаться жизненно важными многие вопросы связанные с этими объектами и процессами. Например: на какой вы соте ракета достигнет первой космической скорости и выйдет и орбиту спутника Земли; до какой предельной температуры нагреется ее оболочка? Какой может быть максимальная нагрузка на железнодорожный мост, при которой не будет происходить его разрушение? Каким будет уровень воды в водохранилище в тех погодных условиях, которые предсказывают метеорологи? Не вымрет лишняя популяция животных через сто лет?

На эти вопросы желательно получить ответы теоретическим путем, поскольку экспериментальный путь либо невозможен, либо возможен, но опасен. Например, при перегрузке моста можно его разрушить, при перегреве корпуса ракеты ее можно сжечь; а экспериментально проверить, что будете с популяцией животных через сто лет, невозможно. В подобных ситуациях ни помощь человек приходят математическое моделирование и вычислительный эксперимент.

Этапы математического моделирования на компьютере

В математической модели используются количественные (числовые) характеристики объекта. Например, в математической модели полета ракеты учитываются масса и скорость ракеты, сила тяги двигателей, сопротивление атмосферного воздуха, теплоемкость обшивки ракеты, время полета, высота ракеты над поверхностью Земли, плотность атмосферы. Все эти величины связываются между собой через уравнения, отражающие физические законы движения тела в воздушной среде, нагревания тела в процессе трения. Из этих уравнений, зная одни величины — исходные данные, можно вычислить другие величины — результаты. Например, зная массу ракеты, силу тяги двигателей, скорость сгорания топлива, коэффициент трения воздуха о корпус, можно вычислить, какой будет высота и скорость ракеты в данный момент времени, а также температура обшивки ракеты. Часто такие расчеты бывает трудно осуществить вручную, и тогда используются компьютерные методы решения задачи.

Повторим определения понятий, которые были введены на уроках 11 — 14.

Реализованная на компьютере математическая модель называется компьютерной математической моделью, а проведение расчетов с помощью компьютерной модели с целью прогнозирования поведения моделируемой системы называется вычислительным экспериментом.

Таким образом, этапы компьютерного математического моделирования следующие:

1) выделение количественных характеристик моделируемой системы, существенных для решаемой задачи;
2) получение математических соотношений (формул, уравнений, систем уравнений и пр.), связывающих эти характеристики;
3) определение способа решения полученной математической задачи и реализация ее на компьютере с помощью прикладных программных средств или на языках программирования;
4) решение поставленной задачи путем проведения вычислительного эксперимента.

В результате вычислительного эксперимента можно получить прогноз поведения исследуемой системы; выяснить вопрос о том. как изменение одних характеристик системы отразится на других .

Одним из видов прикладных программных средств, пригодны для реализации математической модели на компьютере, являются табличные процессоры.

Источник

Что такое математическая модель?

Понятие математической модели.

Математическая модель — очень простое понятие. И очень важное. Именно математические модели связывают математику и реальную жизнь.

Говоря простым языком, математическая модель — это математическое описание любой ситуации. И всё. Модель может быть примитивной, может быть и суперсложной. Какая ситуация, такая и модель.)

В любом (я повторяю — в любом!) деле, где нужно чего-нибудь посчитать да рассчитать — мы занимаемся математическим моделированием. Даже если и не подозреваем об этом.)

Например, нам нужно посчитать расходы (Р) на покупки в магазине. Надо купить две булки (Б) и три пачки масла (М). Мы знаем цену булки (ЦБ) и цену масла (ЦМ). Легко можно записать:

Вот эта запись и будет математической моделью расходов на наши покупки. Модель не учитывает цвет упаковки, срок годности, вежливость кассиров и т.п. На то она и модель, а не реальная покупка. Но расходы, т.е. то, что нам надо — мы узнаем точно. Если модель правильная, конечно.

Представлять, что такое математическая модель полезно, но этого мало. Самое главное — уметь эти модели строить.

Составление (построение) математической модели задачи.

Составить математическую модель — это значит, перевести условия задачи в математическую форму. Т.е. превратить слова в уравнение, формулу, неравенство и т.д. Причём превратить так, чтобы эта математика строго соответствовала исходному тексту. Иначе у нас получится математическая модель какой-то другой, неведомой нам задачи.)

Говоря конкретнее, нужно установить математическую связь между всеми данными задачи.

Задач в мире — бесконечное количество. Поэтому предложить чёткую пошаговую инструкцию по составлению математической модели любой задачи — невозможно.

Но можно выделить три основных момента, на которые нужно обратить внимание.

1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.

2. В любой задаче имеется скрытая информация. Это текст, который предполагает наличие дополнительных знаний в голове. Без них — никак. Кроме того, математическая информация частенько скрывается за простыми словами и. проскакивает мимо внимания.

3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.

Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.

А теперь — примеры.

Начнём с простой задачки:

Петрович вернулся с рыбалки и гордо предъявил семье улов. При ближайшем рассмотрении оказалось, что 8 рыбин родом из северных морей, 20% всех рыбин — из южных, а из местной реки, где рыбачил Петрович — нет ни одной. Сколько всего рыбин купил Петрович в магазине «Морепродукты»?

Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.

С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:

Обращаем внимание на первый момент.

Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)

Обращаем внимание на второй момент.

Ищем скрытую информацию. Она здесь есть. Это слова: «20% всех рыбин«. Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.

Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: «Сколько всего рыбин купил. « Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой «х». Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:

х штук — общее количество рыб.

В нашей задаче южные рыбы даны в процентах. Надо их перевести в штуки. Зачем? Затем, что в любой задаче модели надо составлять в однотипных величинах. Штуки — так всё в штуках. Если даны, скажем часы и минуты — всё переводим во что-нибудь одно — или только часы, или только минуты. Не суть важно во что. Важно, чтобы все величины были однотипными.

Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да. А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!

Общее количество рыб (в штуках!) мы не зря буквой «х» обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:

0,2·х штук — количество рыб из южных морей.

Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.

Обращаем внимание на третий момент.

Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают. Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.

Что у нас есть? Есть 8 штук северных рыб, 0,2·х штук — южных рыб и х рыб — общее количество. Можно связать эти данные как-то воедино? Да легко! Общее количество рыб равно сумме южных и северных! Ну кто бы мог подумать. ) Вот и записываем:

Вот это уравнение и будет математической моделью нашей задачи.

Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.

Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.

Составим математичесскую модель ещё одной задачки:

Спросили Петровича: «А много ли у тебя денег?» Заплакал Петрович и отвечает: «Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется. » Сколько денег у Петровича?

Опять работаем по пунктам.

1. Ищем явную информацию. Тут её не сразу и обнаружишь! Явная информация — это один мешок денег. Есть ещё какие-то половинки. Ну, это во втором пункте разберём.

2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: «Сколько денег у Петровича?» Обозначим количество денег буквой «х»:

И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:

0,5·х — половина всех денег.

Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:

0,5·0,5·х = 0,25х — половина остатка.

Теперь вся скрытая информация выявлена и записана.

3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):

Если я потрачу половину всех денег.

Запишем этот процесс. Всех денег — х. Половина — 0,5·х. Потратить — это отнять. Фраза превращается в запись:

да половину остатка.

Отнимем ещё половину остатка:

то всего-то один мешок денег у меня и останется.

А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:

Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:

Вопрос на соображение. Четыре — это чего? Рубля, доллара, юаня? А в каких единицах у нас деньги в математической модели записаны? В мешках! Значит, четыре мешка денег у Петровича. Тоже неплохо.)

Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах здесь.

В задачах на движение требуется держать в голове формулу-ключ: связь расстояния, скорости и времени. По ссылке можно посмотреть примеры составления модели и решения таких задач.

В задачах на работу надо чётко понимать формулу-ключ: связь времени, производительности труда и объёма работы. Там имеются свои фишки, с которыми можно ознакомиться по ссылке.

Для того, чтобы свободнее ориентироваться в построении математических моделей очень полезно порешать обратные задачи. Т.е. по заданной модели придумать условие задачи. Это, кстати, не так просто.) Тема может быть совершенно любой, фантазия ограничена только математикой. Вот примеры таких заданий:

Составить задачу по математической модели:

х + (х+10) + (х-30) + 20 = 120

Я специально не раскрываю скобки и не привожу подобные — так проще.

Попробуйте придумать задачку, а потом можете найти в уроке Как решать задачи по математике исходную задачу для этой модели. И сравните, для интереса.)

Еще пример, посложнее:

Составить задачу по математической модели:

Исходная задача и её решение приведены в уроке Решение задач на движение. Кстати, по ссылке подробно написано, как эту математическую модель составить.

Составить задачу по математической модели:

1 = 5 · (х + 2х + 2х + 3х + 4х)

Эта задача и её решение расписаны в уроке Задачи на работу.

Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
— информации в задаче хватает для её решения,
— лишней информации в задаче не бывает.

Это подсказка. Если осталась какая-то неиспользованная в математической модели величина — задумайтесь, нет ли ошибки. Если данных никак не хватает — скорее всего, не вся скрытая информация выявлена и записана.

В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Источник

Читайте также:  Таблица размеров смартфонов xiaomi
Adblock
detector