Меню

Математическая модель и компьютерная математическая модель таблица

Знаковые модели. Компьютерные математические модели

Урок 4. Информатика 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам в личном кабинете

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности

Конспект урока «Знаковые модели. Компьютерные математические модели»

· Определение компьютерной математической модели.

· Использование компьютерной математических моделей.

· Применение при решении задач.

Самые разные математические модели широко использовались и используются при изучении многих научных областей и дисциплин. Так, на пример, учёные астрономы используют математические модели, чтобы предсказать движение небесных тел. Как мы уже знаем, при составлении любых информационных моделей учитываются существенные свойства объекта или явления. Но что делать, если этих свойств очень много или они очень сложны для расчёта? Ведь человеку понадобится немало времени для реализации такой математической модели.

Реализация – это расчёт состояния объекта или системы, по формулам из математической модели, которые связывают значения его исходных и результирующих параметров.

Это одна из важнейших областей применения компьютеров. Ведь компьютер способен выполнять миллионы математических операций в секунду.

Математические модели, реализованные на компьютере с помощью тех или иных программных средств, называются компьютерными математическими моделями.

Для реализации математических моделей на компьютере могут использоваться:

· различные языки программирования,

· различные математические пакеты.

При использовании некоторых средств визуализации можно наглядно представить результаты и процесс работы той или иной системы.

Компьютерные математические модели широко используются в различных областях науки. На пример, используя средства визуализации табличного процессора Microsoft Excel (его вы будете изучать позже) можно отобразить в виде линии траекторию полёта снаряда, который выпущен из пушки, расположенной на земле. Снаряд был выпущен с известной начальной скоростью, под определённым углом к горизонту.

Реализация математической модели в Microsoft Excel

После того, как математическая модель была задана достаточно нескольких нажатий клавиш, чтобы изменить исходные данные системы. И мы тут же получили результирующие данные для системы с другими параметрами.

Особую роль среди компьютерных математических моделей занимают модели систем, параметры которых могут принимать случайные значения в определённых пределах. Часто для того, чтобы оптимизировать работу такой системы, моделируют её работу при различных параметрах и находят их оптимальные значения. Такая математическая модель называется имитационной.

Имитационные модели применяются во многих сферах жизни человека. Например, моделирование системы обслуживания покупателей в магазине, чтобы выяснить, какое количество продавцов необходимо для нормальной его работы. Ведь мы не можем точно предсказать количество покупателей, пришедших в магазин за единицу времени или точное время обслуживания продавцом каждого из них.

Подобные модели могут применяться во многих областях науки. Рассмотрим пример из теории вероятности. Хорошо известно, что вероятность выпадения герба или цифры при подбрасывании монеты равна 50%, но как это проверить? Можно много раз подбросить монету, записывая результат. При этом очевидно, что чем большее число подбрасываний мы совершим, тем результат будет точнее. Некоторые математики проделывали этот опыт. Результаты некоторые результаты представлены в таблице.

Источник



Использование электронных таблиц MS Excel для компьютерного моделирования

  • рассмотрение этапов информационного моделирования на примере решения конкретных задач;
  • закрепление навыков работы в MS Excel;
  • установление межпредметных связей: информатики и математики.
  • развитие познавательного интереса, воображения;
  • развитие умений применять знания на практике.
  • расширение научного кругозора;
  • воспитание самостоятельности в работе.

Учебно-методическое обеспечение: презентация (Презентация), ПО MS Excel, ПО MS PowerPoint, методические указания.

Оборудование: мультимедийная установка, персональные компьютеры.

Ход конференции

Преподаватель: Межпредметное значение информатики в значительной степени проявляется именно через внедрение компьютерного моделирования в различные научные и прикладные области: математику и физику, технику, биологию и медицину, экономику, управление и многие другие. С помощью компьютерного моделирования решаются многие научные и производственные задачи. Гибким инструментом для компьютерного моделирования является MS Excel.

Возможности электронных таблиц Microsoft Excel весьма многогранны. Всем известно, что Excel является мощным вычислительным инструментом, позволяющим производить простые и сложные расчеты в различных областях человеческой деятельности: математике, физике, инженерных науках, экономике, технологии. На этом уроке мы рассмотрим использование электронных таблиц для решения математических задач и уравнений.

Теоретическая часть

Преподаватель: Рассмотрим этапы информационного моделирования.

1. Модель задачи.

Пусть вам надо решить какую-либо задачу, и вы хотите воспользоваться для этого помощью компьютера. С чего начать? Прежде всего, нужно разобраться, что дано, что требуется получить, как связаны исходные данные и результаты. Предположения, которые позволяют в море информации об изучаемом явлении или объекте определить исходные данные, понять, что будет служить результатом и какова связь между исходными данными и результатом, называют моделью задачи. (Презентация. Слайд 2)

2. Понятие математической модели.

В моделировании есть два различных пути. Во-первых, это использование натурных моделей. Но если модель должна отображать реальность в абстрактной форме, то в таком случае всегда привлекаются средства математики, и мы имеем дело с математической моделью.

Математическая модель выражает существенные признаки объекта или процесса языком уравнений и других математических средств. (Презентация. Слайд 3)

Собственно говоря, в историческом аспекте сама математика обязана своим существованием тому, что пыталась отражать, т.е. моделировать, на своем специфическом языке закономерности окружающего мира.

Под математической моделью понимают систему математических соотношений – формул, уравнений, неравенств и т.д., отражающих существенные свойства объекта или процесса. (Презентация. Слайд 3)

Математическое моделирование в наше время гораздо более всеобъемлющее, нежели моделирование натурное. Математический аппарат для моделирования объектов и процессов реального мира ученые использовали очень давно, но огромный толчок математическому моделированию дало появление ЭВМ, которые сегодня помогают в этой деятельности. Использование математического моделирования – это самый общий метод научных исследований.

Простой пример. Представьте, что нужно определить площадь поверхности письменного стола. Как обычно поступают в таком случае? Измеряют длину и ширину стола, а затем перемножают полученные числа. Это фактически означает, что реальный объект – поверхность стола – заменяется абстрактной математической моделью – прямоугольником. Площадь этого прямоугольника и считается искомой величиной.

Источник

Информационные модели (схемы, карты, таблицы, графики и формулы)

Теория к заданию 3 из ЕГЭ по информатике

Моделирование и компьютерный эксперимент

Общая структура деятельности по созданию компьютерных моделей

Объект (лат. objectum — предмет) — это некоторая часть окружающего мира, рассматриваемая как единое целое. Все, что человек изучает, использует, производит, является объектом. Каждый объект имеет имя, что позволяет отличить один объект от другого (например, стол, атом, город Москва, ураган Катрин и т. п.). Конкретизировать объект можно с помощью параметров. Параметры — это признаки, которые характеризуют какое-либо свойство объекта. Они могут быть количественные (рост, вес, возраст, размер и т. п.) и качественные (форма, материал, цвет, запах, вкус и т. п.). Очень часто можно наблюдать смену состояний объекта в течение времени и, как результат, изменение параметров объекта. Говорят, что происходит некоторый процесс. Переход объекта из одного состояния в другое происходит при воздействии на него других объектов.

Читайте также:  Таблица результатов деятельности фирмы за ряд лет

Модель (лат. modulus — мера; франц. modele — образец) — искусственно созданный объект в виде схем, чертежей, логико-математических знаковых формул, компьютерной программы, физической конструкции, который, будучи аналогичен (подобен, сходен) исследуемому объекту (явлению, процессу, устройству, сооружению, механизму, конструкции), отображает и воспроизводит в более простом, уменьшенном виде структуру, свойства, взаимосвязи и отношения между элементами исследуемого объекта, непосредственное изучение которого связано с какими-либо трудностями, большими затратами средств и энергии или просто недоступно, и тем самым облегчает процесс изучения информации об интересующем нас предмете.

Исследуемый объект по отношению к модели является оригиналом (образцом, прототипом). Модели могут создаваться как из однородного с оригиналом материала (например, макет деревянного сооружения можно сделать тоже из дерева), так и из материала, совершенно отличного от материала оригинала (например, бумажная модель самолета). Кроме того, модели могут быть нематериальными, или абстрактными (например, математическая модель самолета, компьютерная модель электрической сети).

Моделирование — это исследование каких-либо объектов (конкретных или абстрактных) на моделях. Объектом моделирования может быть объект, явление или процесс.

При создании модели стараются отразить наиболее существенные свойства объекта, а несущественные свойства отбрасываются. Например, на глобус наносятся океаны и моря, материки и крупные острова, а маленькие озера и островки на него не попадают: в масштабе глобуса они будут просто не видны.

Человек постоянно занимается моделированием, поскольку модели, упрощая объекты и явления, помогают человеку понять реальный мир. Более того, любая наука начинается с разработки простых и адекватных моделей.

Кроме материальных (предметных) моделей (игрушки, глобуса, макета дома. ), существуют нематериальные — абстрактные модели: описания, формулы, изображения, схемы, чертежи, графики и т. д. С помощью математических формул описываются, например, арифметические операции, соотношения геометрии, законы движения и взаимодействия тел (S = Vt, F = mа) и многое другое. Химические формулы помогают представить молекулярный состав химических веществ и реакции, в которые они вступают. Пользуясь таблицами, графиками, диаграммами можно отображать различные закономерности и зависимости реального мира.

Все абстрактные модели не имеют физического воплощения. Абстрактные модели, которые можно представить с помощью набора знаков (геометрических фигур, символов, фрагментов текста), — это знаковые модели. Любую знаковую модель можно изобразить на бумаге. Чтобы построить знаковую модель, нужно представлять значение знаков и знать правила их преобразования. Абстрактная модель, прежде чем оформиться в виде знаковой модели, сначала рождается в голове человека. Она может передаваться человека к человеку в устной форме. В таких случаях модель еще не является знаковым образом, поскольку не имеет вида чертежа, формулы, текста. Модель в голове человека существует в форме мысленных представлений (мысленная модель). Модели, полученные в результате умозаключений, называются вербальными (лат. verbalis — устный). Вербальными называются также модели, изложенные в разговорной форме. Таким образом, все абстрактные модели можно разделить на знаковые и вербальные.

Представленная классификация моделей самая простая. Она основана на делении моделей по способу представления. Возможны и другие классификации, — например, по предметному признаку: физические, химические модели, модели строительных конструкций, различных механизмов и т. д.

Если модель формулируется таким образом, что ее можно обработать на компьютере, то она называется компьютерной. Компьютерная модель — это модель, реализуемая с помощью программных средств.

Компьютерные модели обычно различают по программному обеспечению, которое применяется при создании и работе с моделью. Для обработки компьютерных моделей используются существующие программные приложения (математические пакеты, электронные таблицы, графические редакторы и т. д.) либо разрабатываются оригинальные программы с помощью языков программирования (Ваsic, Раsсаl, Dеlpi, С++ и др.).

Моделирование с использованием компьютера предоставляет неизмеримо больше возможностей, чем простое моделирование с помощью реальных предметов или материалов. Например, применение компьютера для раскроя (листового металла, ткани и пр.) позволяет снизить до минимума потери материала. Поиск оптимального решения этой задачи с помощью шаблонов потребует значительно больше времени и средств.

Этапы создания модели

Моделирование — творческий процесс, и разложить его на какие-либо этапы и шаги очень сложно. Многие модели и теории рождаются как соединение опыта и интуиции ученого или специалиста. Однако решение большинства конкретных задач все же можно представить поэтапно.

Моделирование, в том числе компьютерное, начинается с постановки задачи. На этом этапе формулируется задача и требования, которые предъявляются к решению. Постановка задачи заключается, прежде всего, в ее описании. Задача может быть описана на обыденном языке — например, в форме вопроса «что будет, если. ?» или «как сделать, чтобы. ?». Математическую задачу описывают с помощью формул и знаков, а инженерная, экономическая задача может быть описана с помощью различных схем, графиков.

При постановке задачи нужно отразить (или хотя бы понять) цель или мотив создания модели. Одни модели создаются, чтобы разобраться в устройстве или составе того или иного объекта. Другие модели направлены на изучение возможностей управления объектом. Третьи модели ставят целью предсказать поведение объекта (задачи прогнозирования). На этапе постановки задачи полезным оказывается предварительный анализ объекта. Разложение объекта на составляющие, выяснение связей между ними позволяет уточнить постановку задачи.

За постановкой задачи следует этап разработки модели. На этом этапе необходимо выделить существенные факторы, т. е. выяснить основные свойства описываемого объекта, правильно определить связи между ними и с другими объектами окружающего мира. Анализ информации, по возможности, должен быть разносторонним и полным. Те факторы, которые оказались несущественными, могут быть отброшены.

Читайте также:  Заполнить таблицу черты общественного строя сша

После того как сформулированы основные свойства разрабатываемой модели, определены исходные данные и желаемый результат, наступает очень важный момент — составление алгоритма решения задачи.

При разработке компьютерной модели весьма существенным будет выбор программного обеспечения, с помощью которого выполняется моделирование. Программное обеспечение должно позволять эффективно решать задачи, подобные той, которая рассматривается. Например, для создания рисунка на компьютере нужно выбрать тот или иной графический редактор (какой именно — зависит от требуемого формата файла и приемов, которые необходимо применять при рисовании). Чтобы решить систему уравнений, нужно воспользоваться языками программирования Basic, Pascal или каким-либо другим или же использовать для решения математические пакеты. Программная среда должна соответствовать поставленной задаче — только в этом случае задача может быть успешно решена. Выбор программного обеспечения и составление алгоритма — это взаимосвязанные действия. Возможно, что для решения поставленной задачи придется разработать собственную компьютерную программу.

Когда модель разработана, можно приступать к наиболее интересному этапу — компьютерным экспериментам. В ходе этих экспериментов проверяется работа модели, а также выполняются необходимые расчеты или преобразования, ради которых и создавалась модель.

Проверка модели осуществляется обычно с помощью ее тестирования. При тестировании проверяется разработанный алгоритм функционирования модели. В качестве теста задаются исходные данные, для которых заранее известен ответ. Если ответ, полученный при тестировании, совпадает с известным ответом, а тест составлен правильно, то считается, что модель работает корректно. В противном случае нужно искать и устранять причины расхождений. Все эти действия называются отладкой модели.

После выполнения тестирования и отладки можно приступать непосредственно к моделированию. Технология моделирования может заключаться в расчете модели при различных наборах входных данных, различных параметрах.

Завершается компьютерное моделирование анализом результатов. Материалом для анализа являются результаты компьютерных экспериментов. Поэтому эксперименты должны быть проведены таким образом, чтобы получить достоверный результат. Анализ результатов может привести к необходимости уточнения модели, т. е. к повторному выполнению второго этапа и всех последующих этапов.

Этапы компьютерного моделирования можно представить в виде таблицы.

1. ПОСТАНОВКА ЗАДАЧИ Описание
Мотивация
Предварительный анализ

2. РАЗРАБОТКА МОДЕЛИ Выделение существенных факторов
Составление алгоритма
Выбор программного обеспечения
Программирование

3. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ Тестирование модели
Отладка модели
Расчет модели при различных входных данных

4. АНАЛИЗ РЕЗУЛЬТАТОВ

Представление и считывание данных в разных типах информационных моделей (схемы, карты, таблицы, графики и формулы)

Многообразие объектов предполагает использование огромного количества инструментов для реализации и описания этих моделей. Для исследования большинства объектов не обязательно создавать материальные модели. Если ясно представлять цель исследования, то часто достаточно иметь нужную информацию и представить ее в оптимальной форме. В этом случае речь идет о создании информационной модели. Информационные модели — это абстрактные модели, поскольку, как известно, информация — это нематериальная категория.

Информационная модель — это целенаправленно отобранная информация об объекте, представленная в некоторой форме.

Простейшими примерами информационных моделей являются различные загадки, в которых описываются свойства, по которым нужно угадать название объекта («Летом серый, зимой белый»; «Зимой и летом одним цветом»). К информационным моделям можно отнести тексты справочных изданий, энциклопедий.

Формы представления информационных моделей могут быть различными. Наиболее известны следующие формы:

  • в виде сигналов;
  • устная, словесная;
  • символьная (числа, текст, символы);
  • табличная;
  • схемы, карты;
  • графики.

Один и тот же объект, в зависимости от поставленной цели, можно представить несколькими информационными моделями, отличающимися набором параметров и способом их представления. Рассмотрим примеры анализа информации для модели, представленной в табличной форме.

Пример 1. Таблица стоимости перевозок между станциями A, B, C, D, E построена следующим образом: числа, стоящие в ячейках на пересечении строк и столбцов, означают стоимость проезда между соответствующими соседними станциями. Стоимость проезда по маршруту складывается из стоимостей проезда между соответствующими соседними станциями. Если на пересечении строки и столбца пусто, то станции не являются соседними. Выбрать таблицу, для которой выполняется условие: «Минимальная стоимость проезда из А в B не больше 6».

Решение. Прежде всего, нужно отметить, что данные в таблицах симметричны относительно главной диагонали, т. е. проезд из А в В стоит столько же, сколько и из В в А.

Рассмотрим первую таблицу. Выберем все возможные варианты проезда из А в В и соответственно подсчитаем стоимости: AC(3) + CB(4); AC(3) + CE(2) + EB(2)

Примечание. В скобках указана стоимость проезда.

Стоимость, как первого, так и второго варианта маршрута равна 7.

Аналогично поступим для второй таблицы: AC(3) + CB(4); AE(1) + EC(2) + CB(4).

Как и в случае с предыдущей таблицей, стоимость как первого, так и второго варианта маршрута равна 7.

Выписываем все варианты для третьей таблицы: AC(3) + CB(4); AC(3) + CE(2) + EB(1).

Стоимость последнего варианта маршрута равна 6.

Ответ: таблица номер 3 содержит маршрут из А в В, стоимость которого не превышает 6.

Пример 2. Для заданной информационной модели, записанной в форме таблицы, построить модель в виде схемы. В ячейках на пересечении строк и столбцов таблицы указана стоимость проезда между соседними станциями. Пустые ячейки означают, что станции не являются соседними.

Решение. Отметим точку A, она должна быть соединена с C и D. Отмечаем точки C и D и соединяем их с точкой А дугами; над каждой дугой указываем стоимость проезда. Точка С должна быть соединена, кроме А, с точками В и Е. Точка D является соседней только с А. Точка В должна быть соединена, кроме С, с точкой Е. В результате можно получить следующую схему:

Математические модели (графики, исследование функций)

Знаковые модели принято делить на математические и информационные.

Математическая модель — это знаковая модель, сформулированная на языке математики и логики. Это система математических соотношений — формул, уравнений, неравенств, графиков и т. д., отображающих связи различных параметров объекта, системы объектов, процесса или явления.

Над элементами математической модели можно выполнять определенные математические преобразования. Например, в модели нахождения наименьшего числа выполняются операции сравнения, а в модели вычисления корня уравнения — различные арифметические операции. С помощью математических моделей описываются решения различных инженерных задач, многие физические процессы (движение планет, автомобиля и т. п.); технологические процессы (сварка, плавление металла и т. п.). Графики, таблицы, диаграммы позволяют отображать различные закономерности и зависимости реального мира. Например, модель развития эпидемии можно описать как с помощью формул, так и с помощью графика. Полет снаряда, выпущенного из орудия, можно математически смоделировать с помощью известных формул движения, затем построить график движения снаряда — баллистическую кривую, которая отображает реальный полет снаряда. Математически изменяя параметры снаряда или характеристики движения, можно изучать, например, вопросы увеличения дальности или высоты полета и т. п.

Читайте также:  История россии северная война 1700 1721 таблица

Как известно, не все математические задачи можно решить аналитически, т. е. получить решение в виде формул. Значительно больше задач, которые решаются приближенно, с заданной точностью, т. е. с использованием численных методов. Реализация приближенных расчетов на компьютерах позволяет повысить точность и скорость расчетов.

В настоящее время расчеты для большинства математических моделей проводят на компьютерах, используя специальные прикладные программные комплексы, которые позволяют:

  • в несколько раз сократить время проведения исследований;
  • уменьшить количество участников эксперимента;
  • повысить точность и достоверность эксперимента, а следовательно, увеличить контроль;
  • за счет средств графической визуализации, например анимации, получить реальную «картинку»;
  • повысить качество и информативность эксперимента за счет увеличения числа контролируемых параметров и более точной обработки данных. На экране компьютера возможно, например, формирование целой системы приборов, которые будут отслеживать изменение параметров объекта.

Построение и использование информационных моделей реальных процессов (физических, химических, биологических, экономических)

Моделирование занимает центральное место в исследовании объекта. Компьютеры дают широкие возможности для постановки компьютерных экспериментов. Компьютерное моделирование позволяет воссоздать явления, которые в реальных условиях воспроизвести невозможно. Это, например, движение материков, эффекты землетрясений и наводнений, рождение сверхновых звезд, изменение направлений морских подводных течений и т. д. При изучении этих явлений на помощь приходят компьютеры и компьютерные программы, причем последние составляются квалифицированными программистами совместно с различными специалистами: физиками, географами, биологами, медиками и др.

Компьютерное моделирование используется также при описании и расчете экспериментов, которые выполнять в реальности не следует. Это, например, модели ядерного взрыва, пожара на предприятии, столкновения на железной дороге, военных действий и т. д. С помощью компьютерных моделей можно с достаточной точностью описать детали этих катастроф и спрогнозировать последствия.

Построение моделей позволяет осознанно принимать решения по усовершенствованию имеющихся объектов и созданию новых, изменению процессов управления ими. И, как следствие, наблюдается изменение окружающего нас мира.

Примеры информационных компьютерных моделей для различных отраслей знаний приведены в таблице.

Источник

Информатика. 11 класс

Конспект урока

Информатика, 11 класс. Урок № 9.

Тема — Компьютерное моделирование

Любое явление или объект обладает огромным количеством свойств, характеристик или параметров, охватить которые бывает очень сложно, поэтому приходится проводить упрощение такого объекта, отбрасывая несущественные детали. Иными словами, строить модель.

Под моделью мы будем понимать любой материальный или идеальный объект, обладающий некоторыми свойствами, совпадающими со свойствами реального объекта.

При этом исследователь будет выбирать такие свойства, которые являются существенными для изучаемого объекта. Например, при проектировке здания архитектору важен внешний вид объекта, для инженера — прочность и материалы, для инженера-геолога – нагрузка на грунт. Поэтому модель одного и того же здания будет различна.

Давайте рассмотрим еще один класс моделей — это математические модели. Например, все геометрические объекты (круг, треугольник, прямая) являются моделями. В окружающем нас мире не существует таких объектов.

Например, стол. Можем ли мы сказать, что он идеально прямоугольный? Нет, конечно, так как каждый край стола не может быть идеальной прямой линией. Однако, во многих случаях можно считать, что это так.

Подобные рассуждения справедливы и для всех других математических объектов — вектор, числа, функций, производных, интегралов.

Будем считать, что математическое моделирование — это описание реальной ситуации с помощью математических терминов, математических операций и математической символики.

Основоположником математического моделирования в России был академик Российской академии наук Александр Андреевич Самарский, который первый предложил использовать математические модели, реализуемые с помощью компьютера и дальнейшее их исследование. Важнейшим преимуществом использования таких моделей заключается в невысоких финансовых затратах и относительной простоте. При этом практика является и остается критерием истинности и завершающим звеном в исследовании.

Моделирование требует четкого плана действий. На первом этапе формируется задача, которую необходимо решить с помощью модели, далее разрабатывается некий математический эквивалент исследуемого объекта, после чего происходит тестирование такой модели и сравнение с практическими знаниями. Если модель на тестовом этапе не противоречит практике, то проводится эксперимент с моделью, после чего анализируются результаты и делаются выводы. Давайте рассмотрим все этапы моделирования на примере колеса, вращающегося внутри более большого:

ЭТАП 1. Постановка задачи

В колесе радиуса R катится колесо радиуса r. Какую траекторию описывает точка, расположенная на ободе колеса r?

ЭТАП 2. Математическая модель

Траектория движения этой точки находится по формулам:

где φ изменяется от 0 до 2π (угол смещения колеса r).

Вывод уравнения движения смотри по ссылке .

ЭТАП 3. Алгоритм решения

Для получения траектории движения колеса, нам необходимо изменять значение φ от 0 до 30. Вычислять координаты и представлять их на графике. Попробуем это сделать с помощью программы Excel.

ЭТАП 4. Разработка программы. Тестирование

Создадим таблицу по образцу:

В столбец А занесем значения угла φ от 0 до 6.28 с шагом 0.01.

Запишем в ячейку а в ячейку

С помощью маркера заполнения распространим эти формулы до конца таблицы.

По значениям столбцов B и С построим точечный график:

*Если Excel выдает ошибку «#ДЕЛ/0» — введите в ячейки F3 и F4 значения.

ЭТАП 5. Вычислительный эксперимент

Изменяя значения в ячейках F3 и F4, получи различные картинки:

ЭТАП 6. Анализ результатов. Выводы

Вычислительный эксперимент показал, что вид фигуры зависит от отношения радиусов маленького и большого колеса. Такие фигуры носят названия — ГИПОЦИКЛЫ.

Самостоятельная работа:

Попробуйте самостоятельно получить следующие фигуры:

Источник

Adblock
detector