Меню

Масса оксида азота таблица

Оксиды азота. Азотная кислота

Оксиды азота

Известны несколько оксидов азота.

Несолеобразующие оксиды: N 2O, NO

Солеобразующие оксиды: N 2O 3, NO 2, N 2O 4, N 2O 5

Все оксиды азота, кроме N 2O, ядовитые вещества.

Оксид азота (I) N 2O – это бесцветный газ со слабым запахом и сладковатым вкусом, хорошо растворимый в воде, но не взаимодействует с ней. При достаточно высокой температуре разлагается по уравнению:

В смеси с кислородом N 2O используется в медицине для наркоза («веселящий» газ).

Наиболее важными являются оксиды азота (II) и (IV).

Оксид азота (II) NO – бесцветный газ, не имеет запаха. В воде малорастворим, относится, как и N 2O, к несолеобразующим оксидам. Оксид азота (II) NO образуется из азота и кислорода при сильных электрических разрядах (например, во время грозы в воздухе) или при высокой температуре:

В лаборатории оксид азота (II) получают, например, при взаимодействии меди и разбавленной азотной кислоты:

3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO↑ + 4H 2O

Оксид азота (II) в промышленности получают каталитическим окислением аммиака и используют для получения азотной кислоты:

4NH 3 + 5O 2 = 4NO + 6H 2O

Оксид азота (II) на воздухе легко окисляется до оксида азота (IV):

2NO + O 2 = 2NO 2

Оксид азота (IV) NO 2 – ядовитый газ бурого цвета, имеет характерный запах. Хорошо растворяется в воде. Оксид азота (IV) является смешанным оксидом, которому соответствуют две кислоты: азотистая HNO 2 и азотная HNO 3. Поэтому взаимодействие с водой происходит по уравнению:

2NO 2 + H 2O = HNO 2 + HNO 3

При взаимодействии NO 2 с водой в присутствии кислорода (на воздухе) образуется только азотная кислота:

4NO 2 + O 2 + 2H 2O ⇄ 4HNO 3

При растворении NO 2 в щелочи, например NaOH, образуются две соли (нитрат и нитрит) и вода:

2NO 2 + 2NaOH = NaNO 2 + NaNO 3 + H 2O

В избытке кислорода образуется только нитрат натрия:

4NO 2 + 4NaOH + O 2 = 4NaNO 3 + 2H 2O

Ниже 22 0 С молекулы оксида азота (IV) NO 2 легко соединяются попарно и образуют бесцветную жидкость состава N 2O 4, которая при охлаждении до – 10,2 0 С превращается в бесцветные кристаллы.

В лаборатории NO 2 можно получить при взаимодействии, например, меди с концентрированной азотной кислотой:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2↑ + 2H 2O

В промышленности NO 2 получают путем окисления NO кислородом и далее используют для получения азотной кислоты.

Оксид азота (III) N 2O 3 – это темно-синяя жидкость, является кислотным оксидом. При взаимодействии с водой образуется азотистая кислота:

Оксид азота (V) N 2O 5 – бесцветные кристаллы, хорошо растворимые в воде с образованием азотной кислоты:

Азотная кислота

Азотная кислота HNO 3 – бесцветная жидкость, имеет резкий запах, легко испаряется, кипит при температуре 83 0 С. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой). С водой азотная кислота смешивается в любых соотношениях.

Обычно применяемая в лаборатории концентрированная азотная кислота содержит 63% HNO 3. При хранении довольно легко, особенно на свету разлагается по уравнению:

Выделяющийся газ NO 2 окрашивает азотную кислоту в бурый цвет.

Химические свойства

Кислотно – основные свойства

Азотная кислота – одна из наиболее сильных кислот. В водных растворах она полностью диссоциирована на ионы:

Как и все кислоты, она реагирует:

MgO + 2HNO 3 = Mg(NO 3) 2 + H 2O

в) с солями более слабых кислот:

Окислительно – восстановительные свойства

Азотная кислота является одним из сильнейших окислителей. Ее окислительно-восстановительные свойства обусловлены присутствием в молекуле HNO 3 атома азота в высшей степени окисления N +5 в составе кислотного остатка NO 3 — . Окислительные свойства кислотного остатка NO 3 — значительно сильнее, чем ионов водорода Н + , поэтому азотная кислота взаимодействует практически со всеми металлами, кроме золота и платины, находящимися в конце ряда напряжений. Так как окислителем в HNO 3 являются ионы NO 3 — , а не ионы Н + , то при взаимодействии HNO 3 с металлами практически никогда не выделяется водород. Нитрат-ионы NO 3 — при взаимодействии HNO 3 с металлами восстанавливаются тем полнее, чем более разбавлена кислота и чем более активен металл. На следующей схеме показано, какие продукты могут образоваться при восстановлении HNO 3:

Концентрированная HNO 3 при взаимодействии с наиболее активными металлами (до Al в ряду напряжений) восстанавливается до N 2O. Например:

10HNO 3 + 4Ca = 4Ca(NO 3) 2 + N 2O↑ + 5H 2O

Концентрированная HNO 3 при взаимодействии с менее активными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO 2. Например:

4HNO 3 + Ni = Ni(NO 3) 2 + 2NO 2↑ + 2H 2O

Читайте также:  Таблица размеров рост 150

Аналогично концентрированная азотная кислота реагирует с некоторыми неметаллами. Неметалл при этом окисляется до оксокислоты. Например:

5HNO 3 + P = HPO 3 + 5NO 2↑ + 2H 2O

Следует отметить, что концентрированная HNO 3 пассивирует такие металлы, как Fe, Al, Cr. Сущность пассивирования заключается в образовании на поверхности металла тонкой, но очень плотной оксидной плёнки, предохраняющей металл от дальнейшего взаимодействия с кислотой; например:

3Al + 12HNO 3 = Al(NO 3) 3 + Al 2O 3 + 9NO 2↑ + 6H 2O

Разбавленная HNO 3 реагирует с наиболее активными металлами (до Al) с образованием аммиака или нитрата аммония NH 4NO 3:

10HNO 3 + 4Mg = 4Mg(NO 3) 2 + NH 4NO 3 + 3H 2O

При взаимодействии разбавленной азотной кислоты с менее активными металлами образуется оксид азота (II) NO:

8HNO 3 + 3Cu = 3Cu(NO 3) 2 + 2NO↑ + 4H 2O

Таким же образом разбавленная HNO3 взаимодействует с некоторыми неметаллами:

2HNO 3 + S = H 2SO 4 + 2NO↑

Получение

В лаборатории азотную кислоту получают при взаимодействии безводных нитратов с концентрированной серной кислотой:

В промышленности получение азотной кислоты идет в три стадии:

  1. Окисление аммиака до оксида азота (II):

4NH 3 + 5O 2 = 4NO + 6H 2O

  1. Окисление оксида азота (II) в оксид азота (IV):

2NO + O 2 = 2NO 2

  1. Растворение оксида азота (IV) в воде и избытком кислорода:

4NO 2 + 2H 2O + O 2 = 4HNO 3

Применение

Азотную кислоту применяют для получения азотных удобрений, лекарственных и взрывчатых веществ.

Соли азотной кислоты

Соли азотной кислоты называются нитратами. Нитраты калия, натрия, аммония и кальция называются селитрами. Селитры применяют как минеральные азотные удобрения, так как азот является одним из основных элементов питания растений.

Все соли азотной кислоты хорошо растворимы в воде.

Соли азотной кислоты, как и она сама, являются сильными окислителями.

При нагревании все нитраты разлагаются с выделением кислорода, характер других продуктов разложения зависит от положения металла в ряду напряжений:

2NaNO 3 = 2NaNO 2 + O 2↑

2AgNO 3 = 2Ag + 2NO 2↑ + O 2↑

*на изображении записи кристаллы нитрата меди (II)

Источник



Молярный объём и молярная масса: задачи

Молярный объём и молярная масса необходимы для решения задач по химии . Давайте вспомним, что

В нормальных условиях (температура 0 градусов Цельсия и давление 1 атмосфера) молярный объём равен 22,4 литра . То есть 1 моль любого газа в нормальных условиях занимает объём 22,4 литра.

Если молярный объём для всех газов одинаков, то молярная масса для всех веществ разная и рассчитывается она по данным из таблицы Менделеева . Попрактикуемся?

Пример 1.

Укажите молярную массу и молярный объём (н.у.) оксида азота (V).

Формула оксида азота (V) N2O5. Определяем молярную массу. Для это смотрим в периодической таблице атомные массы азота и кислорода и вспоминаем, что молярная масса совпадает с молекулярной . Таблица нам говорит, что атомная масса азота 14, атомная масса кислорода 16. Отсюда молекулярная масса оксида азота (V): 2*14+5*16=118, это же значение имеет и молярная масса – 118 г/моль.

А вот молярный объём оксида азота (V) в нормальных условиях равен 22,4 л/моль, потому что молярный объём любого газа в нормальных условиях равен 22,4 л/моль .

Ответ: молярная масса оксида азота (V) 118 г/моль, молярный объём оксида азота (V) 22,4 л/моль.

Пример 2.

Произошла реакция между оксидом кальция и углекислым газом с образованием карбоната кальция. Известно, что в результате реакции образовалось 130 г карбоната кальция. Определите, сколько вступило в реакцию оксида кальция (в граммах) и углекислого газа (в литрах).

Для начала запишем уравнение реакции. Оно выглядит так:

СаО + СО2 = СаСО3

Отметьте для себя, что согласно уравнению в реакцию вступает 1 моль оксида кальция и 1 моль углекислого газа, при образуется 1 моль карбоната кальция, то есть:

1 моль СаО + 1 моль СО2 = 1 моль СаСО3

Далее вернёмся к условию и посмотрим, что нам известно. А известно нам, что получилось 130 г карбоната кальция. Посчитаем молярную массу СаСО3 ( воспользуемся данными из таблицы Менделеева ): 40+12+3*16= 100 г/моль. Это означает, что 100 г вести 1 моль СаСО3. Тогда мы можем составить пропорцию:

100 г весит 1 моль СаСО3

130 г вести Х моль СаСО3

Отсюда следует, что Х=130 г*1 моль/100 г=1,3 моль. Таким образом, в результате нашей реакции образовалось 1,3 моль карбоната кальция. Вспомним, что мы писали выше.

По уравнению реакции мы увидели, что:

1 моль СаО + 1 моль СО2 = 1 моль СаСО3

Но только что мы рассчитали, что в реакции получилось 1,3 моль СаСО3. То есть в условиях задачи получается:

Х моль СаО + Х моль СО2 = 1,3 моль СаСО3

Отсюда очевидно, что в реакции приняло участие 1,3 моль СаО и 1,3 моль СО2. Но ответ нам нужен в граммах (для СаО) и литрах (для СО2). Поэтому рассчитаем молярную массу оксида кальция (из периодической таблицы): 40+16=56 г/моль. То есть 56 г весит 1 моль СаО. А у нас 1,3 моль СаО (мы это рассчитали ранее). Переведём это количество вещества в граммы: 56 г/моль*1,3 моль=72,8 г.

Читайте также:  Футбол россии премьер лига таблица сейчас

С объёмом углекислого газа всё проще. 1 моль углекислого газа в н.у. занимает 22,4 л. Отсюда 1,3 моль углекислого газа занимают 22,4л/моль*1,3 моль=29,12 л.

Ответ: в реакцию вступило 72,8 г оксида кальция и 29,12 л углекислого газа.

Пример 3.

Фосфор сгорел с образованием оксида фосфора (V) . Известно, что фосфора взяли 15,5 г. Определите, сколько потребовалось для проведения реакции литров кислорода (н.у.) и сколько образовалось оксида фосфора (V).

Как обычно и рекомендуют учебники химии, запишем уравнение реакции:

Из реакции видно следующее:

4 моль Р + 5 моль О2 = 2 моль Р2О5. Отметим это.

Далее посчитаем, какое количество фосфора вступило в реакцию. Молярная масса фосфора 31 г/моль (из таблицы Менделеева). В условиях сказано, что в реакцию вступило 15,5 /моль. Тогда:

1 моль Р весит 31 г

Х моль Р весит 1,5 г

Отсюда Х=1 моль*15,5 г/31 г=0,5 моль. То есть в нашей реакции поучаствовало всего 0,5 моль фосфора.

Теперь вспомним, что по уравнению реакции:

4 моль Р + 5 моль О2 = 2 моль Р2О5

А в наших условиях получается так:

0,5 моль Р + Х моль О2 = Y моль Р2О5

Сначала узнаем, сколько же моль кислорода было у нас. Для этого составим пропорцию:

4 моль Р реагируют с 5 моль О2 (это из уравнения реакции)

0,5 моль Р реагируют с Х моль О2 (это у нас). Отсюда

Х=0,5 моль*5 моль/4 моль=0,625 моль. То есть в нашей реакции приняло участие 0,625 моль кислорода. Кислород — это газ, в нормальных условиях 1 моль любого газа занимает 22,4 л. Тогда 0,625 моль газа займут 0,625 моль*22,4 л/моль=14 л. Это одна часть ответа.

Снова вернёмся чуть выше, к уравнению реакции:

4 моль Р + 5 моль О2 = 2 моль Р2О5

и 0,5 моль Р + Х моль О2 = Y моль Р2О5

Х мы уже нашли. Теперь ищем Y и делаем так:

4 моль Р при сгорании образуют 2 моль Р2О5

0,5 моль Р при сгорании образуют Y моль Р2О5

Отсюда Y=0,5 моль*2 моль/4 моль=0,25 моль. То есть в нашей реакции образуется 0,25 моль оксида фосфора. Чтобы перевести это в граммы, найдём молярную массу оксида Р2О5 (из периодической таблицы): 2*31+5*16=152 г/моль. Отсюда масса образовавшегося оксида фосфора 0,25 моль*152 г/моль=38 г. Это вторая часть ответа.

Ответ: для проведения реакции понадобилось 14 л кислорода, в результате реакции образовалось 38 г оксида фосфора (V).

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме

Источник

Оксиды азота

Азот образует несколько оксидов:

  • солеобразующие оксиды:
    • N2O3 — оксид азота (III)
    • NO2 — оксид азота (IV)
    • N2O4 — димер оксида азота (IV)
    • N2O5 — оксид азота (V)
  • несолеобразующие оксиды:
    • N2O — оксид азота (I)
    • NO — оксид азота (II)

Все оксиды азота, за исключением N2O, являются ядовитыми веществами.

Оксид азота N2O (I)

Строение молекулы линейное:

N2O (I) — бесцветный газ со слабым запахом и сладковатым вкусом.

  • растворяется в воде, но не реагирует с ней;
  • разлагается при слабом нагревании:
    2N2O → 2N2+O2
  • реагирует с водородом со взрывом:
    N2O+H2 → N2+H2O
  • получают разложением нитрата аммония:
    NH4NO3 → N2O+2H2O
  • применяют в смеси с кислородом в качестве «веселящего газа», как средство общего наркоза в медицине, а также для получения азидов:
    N2O+NaNH2 → NaN3+H2O

Оксид азота NO(II)

Молекула имеет вид:

Оксид азота NO(II) димеризуется (образуется новое вещество путём соединения двух структурных элементов) только при низких температурах.

  • Бесцветный газ, без запаха.
  • Малорастворим в воде.
  • Легко окисляется на воздухе с образованием диоксида азота:
    2NO+O2=2NO2.
  • Взаимодействует с другими окислителями (CrO3,Cl2, KMnO4).
  • Реагирует с активными металлами, водородом:
    K+NO=KNO
    2NO+2H2=N2+2H2O

NO(II) содержится в выхлопных газах автомобилей с двигателями внутреннего сгорания — проходя через каталитический конвертор, состоящий из нагретых до высокой температуры керамических ячеек, оксиды азота восстанавливаются, а СО окисляется:
2NO+2CO → N2+2CO2

В природе NO(II) образуется во время грозы в результате взаимодействия азота с кислородом при высокой температуре:
N2+O2=2NO.

В промышленных целях NO(II) получают каталитическим окислением аммиака (в роли катализатора используется платина):
4N -3 H3+5O2 0 → 4N +2 O -2 +6H2O

В лабораторных условиях NO(II)получают действием разбавленной азотной кислотой на медь:
3Cu 0 +8HN +5 O3 = 3Cu +2 (NO3)2+2N -2 O↑+4H2O

Читайте также:  Невервинтер ошейники для скакунов таблица

Монооксид азота используют для получения азотной кислоты.

Оксид азота N2O3(III)

строение молекулы оксида азота III

Связь N + -O — образована по донорно-акцепторному механизму.

Оксид азота N2O3(III) при н.у. является темно-синей жидкостью. При низких температурах (ниже -100°C) кристаллизуется.

Оксид азота N2O3(III) является кислотным оксидом, в значительной степени диссоциирует и реагирует со щелочами:
N2O3 ↔ NO2+NO
N2O3+2NaOH = 2NaNO2+H2O

Оксид азота N2O3(III) взаимодействует с водой с образованием азотистой кислоты:
N2O3+H2O = 2HNO2

Азотистая кислота является слабой кислотой, и существует только в водном растворе.

Соли азотистой кислоты — нитриты NaNO2, KNO2 являются устойчивыми соединениями, проявляя, как кислотные, так и восстановительные свойства, поскольку атом азота в них имеет «среднее» значение степени окисления (+3).

Оксид азота NO2(IV)

строение молекулы оксида азота IV

Связи N-O располагаются под углом друг к другу, при этом они носят промежуточный «полуторный» характер, при этом имеется еще и один неспаренный электрон, как и у NO (см. выше).

При н.у. оксид азота NO2(IV) является ядовитым газом (хорошо растворимым в воде) бурого цвета, с характерным запахом.

Оксид азота NO2(IV) — смешанный оксид, ему соответствуют две кислоты: азотистая и азотная, поэтому, реакция взаимодействия с водой имеет следующий вид:
2N +4 O2+H2O = HN +3 O2+HN +5 O3

При нагревании до 50°C неустойчивая азотистая кислота не образуется:
3NO2+H2O = 2HNO3+NO

На воздухе NO2 взаимодействует с водой с образованием только азотной кислоты:
4N +4 O2+O2 0 +2H2O ↔ 4HN +5 O3 -2

Оксид азота NO2(IV) взаимодействует с растворами щелочей с образованием воды и двух солей — нитрата и нитрита:
2N +4 O2+2NaOH = NaN +3 O2+NaN +5 O3+H2O

В избытке кислорода образуется только нитрат натрия:
4N +4 O2+4NaOH+O2 0 = 4NaN +5 O3 -2 +2H2O

При температуре ниже 22°C молекулы оксида азота NO2(IV) легко соединяются попарно (димеризуются), в результате чего образуется бесцветная жидкость, превращающаяся в кристаллы при дальнейшем охлаждении до температуры ниже -10,2°C.

димеризация молекулы оксида азота IV

В промышленных условиях оксид азота NO2(IV) получают путем окисления NO кислородом:
2NO+O2=2NO2

В лабораторных условиях оксид азота NO2(IV) получают окислением меди азотной кислотой (концентрированной), либо разложением нитрата свинца (меди):
Cu+4HNO3(конц) = Cu(NO3)2+2NO2↑+2H2O
2Pb(NO3)2 = 2PbO+4NO2↑+O2

Оксид азота NO2(IV) применяют в производстве азотной кислоты.

Оксид азота N2O5(V)

строение молекулы оксида азота V

Связи N + -O — образуются по донорно-акцепторному механизму: атом азота отдает электрон, играя роль донора и приобретая положительный заряд, атом кислорода присоединяет электрон, выступая в роли акцептора и приобретая отрицательный заряд. Атомы азота проявляют степень окисления +5 (валентность 4).

Оксид азота N2O5(V) (азотный ангидрид, пентаоксид диазота) является кристаллическим веществом белого цвета, легко разлагающееся при нормальных условиях:
2N2O5 = 4NO2+O2

Оксид азота N2O5(V) является кислотным оксидом, который при растворении в воде образует азотную кислоту:
N2O5+H2O = 2HNO3

Оксиды азота N2O3 и N2O5 практического применения не имеют.

Другие соединения азота:

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Источник

Chemicals-el.ru

» Сайт о химических элементах

  • Главная
  • Топ посещаемости
  • Все сртаницы сайта
  • Обратная связь

Физико-химические свойства и токсичность оксидов азота. Физико-химические характеристики оксидов азота

Основные физико-химические константы оксидов азота приведены в таблице 3.

Физико-химические свойства оксидов азота [3].

Температура при 0,1013 МПа, 0С:

Как следует из таблицы 3, все три оксида даже при парциальном давлении 0,1013 МПа (в дымовых газах парциальное давление на три порядка меньше) и температуре более 220С находятся в газообразном состоянии. Оксид диазота и оксид азота – бесцветные, а диоксид азота окрашен в коричнево-красный цвет. Именно его присутствие в отходящих газах придает им красно-коричневое окрашивание. Оксид и диоксид азота обладают парамагнитными свойствами.

Оксид азота и оксид диазота растворяются в воде без химического взаимодействия с ней, наименее растворим оксид азота. Его растворимость примерно равна растворимости воздуха. Оксид диазота растворяется в воде в количестве на полтора порядка больше. При растворении диоксида азота образуются азотистая и азотная кислоты [3].

Данные, представленные в таблице 4, соотнесены к парциальному давлению NO 0,1013 МПа. В дымовом газе это давление в 1000 раз меньше. Следовательно, в соответствие с законом Генри, растворимость газа в 1м3 воды при 200С составит не более 0,047 л (63 мг).

Смотрите также

Электрохимические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм–продавцов химико-аналитического оборудования
Электрохимические методы анализа (электроанализ), в основе которых лежат электрохимические процессы, занимают достойное место среди методов контроля состояния окружающей среды, так как спос .

Производство азотной кислоты
Азотная кислота является одной из важнейших минеральных кислот и по объему производства занимает второе место после серной кислоты. Она образует растворимые в воде соли (нитраты), обладает н .

Источник

Adblock
detector