Меню

Магнитная проницаемость пермаллоя таблица



Свойства и характеристики сплавов пермаллоя

Содержание

  1. Состав
  2. Механические, электромагнитные свойства
  3. Область применения
  4. Производство металла

Пермаллой – магнитомягкий сплав никеля и железа, часто дополнительно легированный другими металлами. Полезными свойствами материала являются высокая магнитная проницаемость, малая коэрцитивная сила и практически отсутствующее изменение линейных и объёмных размеров при намагничивании.

Изобретён пермаллой был в 1913г. американским инженером Г. В. Элменом, работавшим на Bell Telephone Laboratories. Сплав применили для экранирования трансатлантического телеграфного кабеля в 1924 г., что говорит о его промышленном производстве уже в то время. Внедрение материала в СССР произошло несколько позже, первый ГОСТ появился в 1963 г. Однако, применение пермаллоев ограничивается из-за зависимости свойств этих сплавов от условий температурной обработки на производстве. И в наше время материал используют только в тех случаях, когда это оправдано с технической и экономической точек зрения.

Состав

Пермаллой относится к прецизионным сплавам, что означает строгое нормирование химического состава и его физико-механических характеристик. Состав этой группы материалов зафиксирован в ГОСТ 10994-74, там же указаны правила маркировки. Марка состоит из литерных обозначений легирующих компонентов и стоящих перед ними чисел, отражающих их массовую долю в сплаве.

Соответствие между буквами и химическими элементами следующее:

  • Г – марганец;
  • Х – хром;
  • Н – никель;
  • Д – медь;
  • А – азот;
  • Ф – ванадий;
  • Б – ниобий;
  • В – вольфрам;
  • Е – селен;
  • К – кобальт;
  • Л – бериллий;
  • М – молибден;
  • Р – бор;
  • Т – титан;
  • Ю – алюминий;
  • Ц – цирконий;
  • П – фосфор;
  • Ч – редкоземельные металлы.

Основным рабочим составом пермаллоя служит марка 79HM, у неё наибольшая магнитная проницаемость. В сплаве высокое содержание никеля и молибден в качестве легирующего компонента, который делает пермаллой более технологичным. Упрощается производственный процесс, материал становится более устойчив к механическим воздействиям, вырастает удельное электросопротивление, улучшается магнитная проницаемость соединения. У добавки молибдена есть отрицательный эффект – уменьшение индукции насыщения. Похожими особенностями в качестве улучшающего компонента обладает хром.

Для упрощения механической обработки металла, повышения температурной стабильности и получения постоянной магнитной проницаемости в узких интервалах напряжённости магнитного поля в пермаллой добавляют некоторое количество меди.

Марганец и кремний добавляют для увеличения удельного сопротивления. В сплавах с большой долей никеля для повышения электросопротивления и снижения темпа охлаждения в качестве легирующих добавок применяют хром, кремний, медь, ну и молибден, про который уже говорилось ранее.

Механические, электромагнитные свойства

Пермаллой устойчив к коррозии, благодаря наличию в составе никеля, сплав окисляется меньше железа, ведь для прохождения реакции между никелем и кислородом нужна температура от 500 °C. Вдобавок материал обладает неплохой ковкостью, что позволяет изготавливать достаточно тонкие листы из этого металла, он легко поддаётся механической обработке.

Магнитные свойства пермаллоя существенно варьируются, в значительной степени определяясь химическим составом соединения. В этой категории выделяют два основных вида сплавов: низконикелевые и высоконикелевые.

Типичным представителем второй группы будет 79НМ с пропорциональным содержанием никеля 78,5–80%. Для него характерными являются малая коэрцитивная сила, сильный магнитозащитный эффект и практически отсутствующая магнитострикция. 79НМ пермаллой имеет низкую электропроводимость. Дополнительными преимуществами являются мягкость и коррозийная устойчивость. Для повышения характеристик в 79НМ добавляют фосфор, получая сплав 79НМП, отличающийся более низким коэффициентом перемагничивания и повышенной прямоугольностью гистерезисной петли.

Похожий сплав, но с немного большей долей молибдена, 5% вместо 4%, носит название суперпермаллой. При соблюдении технологии изготовления и контроле качества в нём достигается показатели относительной магнитной проницаемости µ начальное равный 100000, и µ максимальное – 1000000.

В низконикелевых пермаллоях содержание этого металла колеблется в пределах 40–50%, типичным представителем является перменорм. Коэффициент относительной магнитной проницаемости перменорма находится в диапазоне 3500–35000. Его можно повысить путём дополнительной температурной обработки и созданием текстуры на поверхности пластин. Низконикелевые пермаллои 45Н и 50Н соединяют высокую магнитную проницаемость и индукцию насыщения. По второму показателю они превосходят высоконикелевые пермаллои примерно в 1,5 раза. Сплавы 45Н и 50Н имеют высокую электропроводность и легко намагничиваются, что находит применение в высокоточных электротехнических устройствах.

Область применения

Пермаллой применяется при создании сердечников для электромагнитных катушек. Этот элемент электротехнических схем используется в трансформаторах и электроприборах для изменения характеристик электрического тока. В сердечниках из пермаллоя чаще применяются пластины-кольца, изготовленные из этого материала.

Ещё одной сферой применения является защита кабелей и микросхем от воздействия магнитных полей. Пермалоевые ленты служат экранирующей оплёткой проводов. Они снижают уровень искажения сигналов при телекоммуникации.

Сплав используется в звуковой аппаратуре. Там материал встречается в элементах звукозаписывающих головок. Здесь ключевым эксплуатационным свойством является изменения векторов намагниченности.

Пермаллой находит применение в различных датчиках, к примеру, материал используется в двухосном магнитометре HMC1002.

Производство металла

Следует начать с того, что пермаллой достаточно сложен в производстве, цена на изделия из данного металла устанавливается, как правило, за килограмм или тонну. Чем тоньше прокатные листы, и чем более сложной обработке подвергся металл, тем выше итоговая стоимость. Ленты из ходовых сплавов 50Н и 79НМ стоят примерно 2500–3000 руб. за кг. Помимо этого пермаллой продают в виде прутов, листов и порошка.

Свойства пермаллоя существенно зависят от качества термической обработки металла и наличия в составе примесей. Первоначально высоконикелевые сплавы получались в два этапа. Сначала шло нагревание сплава до температуры 900º, далее он выдерживался в таком состоянии 1 час, а затем шло постепенное охлаждение на 100º в час. Второй этап производственного процесса начинался с повторного нагревания, в этот раз до температуры 600 ºC. После шла воздушная закалка металла на медной плите. Исследования пермаллоя выявили наличие зависимости между магнитными свойствами и скоростью нагрева и охлаждения сплава. С увеличением темпов остывания металла его характеристики снижаются.

Впоследствии выяснилось, что для классического пермаллоя с содержанием никеля 79% двойная термическая обработка вполне может быть заменена одинарной. При таком методе нагревание происходит в камерах заполненных чистым сухим водородом до температуры 1300° с последующим продолжительным отпуском до 400-500. Термическая обработка сплавов с меньшим содержанием никеля проще, поэтому они стоят дешевле. Стоит отметить, что без термической обработки магнитная проницаемость у пермаллоев хуже, чем у очищенного железа.

После проката металлические пластины и ленты подвергаются ещё одному этапу обработки – отжигу. Готовый продукт не должен иметь тёмных пятен, окислов и разноцветных участков. Механические повреждения должны отсутствовать.

После отжига пермаллоивые пластины отправляются на магнитные испытания, где их свойства проверяются на соответствие действующим стандартам.

Источник

Магнитная проницаемость пермаллоя таблица

Наиболее часто применяемые сплавы: 79НМ, 80НХС, 49К2ФА, 49КФ, 16Х в производстве магнитопроводов. Рассмотрены вопросы связанные с применяемостью этих сплавов, их химическим составом, классификация, а так же высокотемпературный отжиг и измерение основных магнитных параметров.

Повышение технических характеристик изделий, имеющих в своем составе детали из электротехнических сталей и прецизионных магнитомягких сплавов, опирается на современные средства моделирования их работы. С достаточной точностью это возможно проводить в среде моделирования Elcut 6.3 Профессиональный, который позволяет выполнять расчеты электрических машин, работающих в постоянных и переменных магнитных полях. Моделирование работы поляризованного электромагнита (ЭМП) с пассивным удержанием штока основано на аналитических данных, полученных при решении осесимметричной задачи магнитостатики в среде Elcut 6.3 Профессиональный, что позволяет установить влияние материала вставок якоря из прецизионных магнитомягких сплавов 27КХ ГОСТ 10160-75 и 49КФ ГОСТ 10160-75 и электротехнической стали 10880 ГОСТ 11036-75 на изменение тяговых усилий и энергопотребление ЭМП.

Читайте также:  Таблица условия труда учитель

Методика подготовки образцов к высокотемпературному отжигу для восстановления магнитных свойств

Достижение восстановления магнитных параметров прецизионных магнитомягких сплавов и легированных и нелегированных электротехнических сталей, а так же других магнитомягких материалов осуществляется высокотемпературным отжигом в инертной среде.

Методика измерений статических магнитных характеристик на основе индукционно-импульсного метода

Развита методика измерения основных магнитных параметров при определении основной кривой намагничивания и петли магнитного гистерезиса в статических магнитных полях индукционно-импульсным методом. Методика позволяет измерять начальную и максимальную магнитные проницаемости, остаточную магнитную индукцию, коэрцитивную силу по намагниченности и индукции и индукцию технического насыщения тороидальных и прямолинейных образцов прецизионных магнитомягких сплавов и легированных и нелегированных электротехнических сталей и других магнитомягких материалов с коэрцитивной силой до 4кА/м с методической погрешностью менее 1% при снижении времени измерения.

Железо-кобальтовый сплав Fe-27Co с высокой намагниченностью и микролегирующими добавками

  • 854
  • 13
  • Прецизионные магнитомягкие сплавы

Наиболее часто применяемые сплавы: 79НМ, 80НХС, 49К2ФА, 49КФ, 16Х в производстве магнитопроводов. Рассмотрены вопросы связанные с применяемостью этих сплавов, их химическим составом, классификация, а так же высокотемпературный отжиг и измерение основных магнитных параметров.

В статье сообщается о разработке нового варианта железо – кобальтового Fe – 27Co сплава обладающего высокой индукцией технического насыщения. Обнаружено, что легирование ниобием (Nb) или танталом (Ta) придает горячекатаному материалу пластичность посредством измельчения зерна. При этом магнитные и пластические свойства нового сплава с торговым названием VACOFLUX ® 27 сравнимы со стандартным Fe – 27Co сплавом, легированным хромом (Cr). В сплаве VACOFLUX ® 27 наблюдается уменьшение удельного электрического сопротивления, и высокая намагниченность насыщения.

Fe – 27Co сплав VACOFLUX ® 27 является зарубежным аналогом отечественного сплава 27КХ ГОСТ 10160-75. Исходя из анализа публикаций по данной тематике становится ясно, что к сожалению аналогичные работы в отечественной металлургии не проводились. А если учесть тот факт, что сплав 27КХ на сегодняшний день находит широкое применение при производстве различных приборов как специального, так и гражданского назначения, то данный материал является актуальным.

Магнитомягкие материалы

  • 3791
  • 12
  • Прецизионные магнитомягкие сплавы

Наиболее часто применяемые сплавы: 79НМ, 80НХС, 49К2ФА, 49КФ, 16Х в производстве магнитопроводов. Рассмотрены вопросы связанные с применяемостью этих сплавов, их химическим составом, классификация, а так же высокотемпературный отжиг и измерение основных магнитных параметров.

Магнитомягкие материалы.

Магнитомягкие материалы — это магнитные материалы, обладающие низкой коэрцитивной силой и как следствие узкой предельной петлей гистерезиса, которые под действием магнитного поля способны легко намагничиваться и размагничиваться. Считается, что к магнитомягким можно отнести те материалы, которые обладают внутренней коэрцитивной силой менее 4000 А/м при условии деления всех магнитных материалов на два класса — магнитомягкие и магнитотвердые, а при выделении в отдельную группу полутвердые материалы (тройная классификация) — материалы с коэрцитивной силой менее 500 А/м.

Магнитомягкие материалы включают в себя широкий спектр железоникелевых и железокобальтовых прецизионных магнитомягких сплавов, кремнистых и нелегированных электротехнических сталей и чистое железо. Магнитомягкие материалы находят применение в устройствах, требующих от материалов высокой начальной и максимальной магнитной проницаемости в сочетании с простотой изготовления.

Для производства прецизионных магнитомягких сплавов используется сложное оборудование, передовые технологии и опыт, накопленный при производстве сплавов для авиационной промышленности. Производство магнитомягких материалов включает в себя применение ультрачистого сырья, специальные процессы и технологии плавки в индукционных печах в инертной атмосфере и рафинирования расплава. Конечный продукт изготавливается путем ковки, горячей и холодной прокатки, волочения проволоки и термообработки в зависимости от технических требований заказчика.

Средненикелевый пермаллой — прецизионные магнитомягкие сплавы 45Н и 50Н

  • 711
  • 11
  • Прецизионные магнитомягкие сплавы

Наиболее часто применяемые сплавы: 79НМ, 80НХС, 49К2ФА, 49КФ, 16Х в производстве магнитопроводов. Рассмотрены вопросы связанные с применяемостью этих сплавов, их химическим составом, классификация, а так же высокотемпературный отжиг и измерение основных магнитных параметров.

К средненикелевым пермаллоям относят сплавы на основе никеля (Ni) и железа (Fe) с содержанием никеля от 45% до 65%. По уровню основных магнитных параметров в соответствии с ГОСТ 10160-75 среднелегированные пермаллои относятся к сплавам с повышенной магнитной проницаемостью и повышенной индукцией технического насыщения. Наиболее часто сплавы применяются для изготовления деталей сердечников малогабаритных силовых трансформаторов, дросселей, реле и деталей магнитных цепей, работающих при повышенной индукции без подмагничивания или с небольшим подмагничиванием.

Подготовка образцов к измерениям магнитных параметров кривой намагничивания и петли гистерезиса

  • 1343
  • 6
  • Измерение магнитных величин

Рассмотрена методика подготовки тороидальных точеных, шихтованных и витых образцов прецизионных магнитомягких сплавов и электротехнических сталей к измерениям магнитных параметров основной кривой намагничивания и предельной петли гистерезиса при статическом и динамическом изменении напряженности магнитного поля.

Кремнистая электротехническая сталь

  • 3106
  • 5
  • Электротехнические стали

Кремнистая изотропная и анизотропная электротехническая сталь нашла широкое применение в ленточных сердечниках, силовых и низкочастотных трансформаторах, электромагнитах, роторах и статорах электрических машин, работающих в динамических электромагнитных полях с частотой до 20 кГц. Применению кремнистых электротехнических сталей способствуют еевысокие значения удельного сопротивления, нанесение электроизоляционных покрытий и малая толщина лент. По содержанию кремния (Si) электротехническая сталь классифицируется на несколько групп: нелегированную: до 0.5%, слаболегированную: 0.5 – 0.8%, легированную ниже среднего: 0.8 – 2.1%, среднелегированную: 1.8 – 2.8%, с повышенным легированием: 2.5 – 3.8% и высоколегированную 3.8 – 4.8%. Легирование электротехнических сталей кремнием (Si) и алюминием (Al) позволяет повысить значения начальной µн и максимальной µmax магнитных проницаемостей, а так же удельного сопротивления, что в свою очередь позволяет сократить удельные магнитные потери. Так при толщине листа электротехнической стали 0.27 мм удельные потери P1,5/50 не превышают 1,5Вт/кг за счет снижения потерь на гистерезис и вихревые токи соответственно. В зависимости от технологии изготовления лент, кремнистая электротехническая сталь выпускается с анизотропией и изотропией магнитных свойств. Кремнистая электротехническая сталь поставляется в виде рулонов с толщиной листа от 0.05 мм до 0.8 мм без покрытия, с нанесенным электроизоляционным, термостойким, или покрытием для облегчения штамповки. С целью снятия внутренних напряжений, возникающих в процессе механической обработки и приводящих к смещению доменных границ, дроблению и перестройки доменной структуры, что в приводит к ухудшению магнитных свойств, кремнистую электротехническую сталь поставляемую без термообработки в зависимости от содержания кремния отжигают при температурах от 800°С до 1150°С с медленным охлаждением в инертной среде.

Нелегированная электротехническая сталь

  • 441
  • 4
  • Электротехнические стали

Нелегированная элекротехническая сталь по уровню своих основных магнитных параметров отностится к магнитомягким материалам и представляет собой сплав железа с углеродом. Отличительной особенностью электротехнических сталей является способность намагничиваться до насыщения в слабых магнитных полях за счет незначительного содержания в ней углерода и примесей, а так же серы и фосфора. Вследствие чего, электротехнические стали характеризуются высокими значениями начальной и максимальной магнитными проницаемостями, индукцией технического насыщения и малыми значениями коэрцитивной силы. Металлургическая промышленность поставляет на рынок электротехническую сталь по ГОСТ 3836-83 Сталь электротехническая нелегированная тонколистовая и ленты марок: 10832, 20832, 11832, 21832, 10848, 20848, 11848, 21848, 10860, 20860, 11860, 21860, 10880; 20880,11880, 21880,10895, 20895, 11895, 21895 и ГОСТ 11036-75 Сталь сортовая электротехническая нелегированная, в соответствии с которым сталь изготовляется следующих марок: 10880, 20880, 10895, 20895, 11880, 21880, 11895, 21895, 10850, 11850, 20850, 21850, 10860, 20860, 11860, 21860. Согласно последнему, для восстановления основных магнитных параметров электротехническую сталь необходимо термообработать в инертной среде при температурах 950±10°С.

Читайте также:  Mayoral обувь таблица размеров

Источник

Магнитная проницаемость — тип, справочная таблица. Что такое магнитометр

Магнитная проницаемость основных материалов, таблица.

  • Магнитная проницаемость — это способность материала поддерживать распростарнение магнитного поля в нем.
  • Магнитная проницаемость измеряется в Гн/м = (H/m (henries/m)) или Н/А2 = (N/A2 (newtons/ampere2)
    • Магнитная проницаемость вакуума = Магнитная постоянная это:
    • µ0 = 4π*10−7 (Гн/м) ≈ 1.257*10−6 (H/m, N/A2)

Относительная магнитная проницаемость материала (случается ее называют просто «магнитной проницаемостью») это: отношение магнитной проницаемости среды к магнитной проницаемости вакуума µ0:

  • µr = µ / µ0
    • где
    • µr = относительная магнитная проницаемость материала (среды)
    • µ =магнитная проницаемость материала (среды)

MediumPermeability- µ — (Гн/м) Relative permeabilityμ / μ0

Воздух 1.25663753*10−6 1.00000037
Алюминий 1.256665*10−6 1.000022
Аустенитная нержавеющая сталь 1.260*10−6 — 8.8*10−6 1.003–7
Вакуум (µ0) 4π*10−7 1
Вода 1.256627*10−6 0.999992
Водород 1.2566371*10−6 1
Висмут 1.25643*10−6 0.999834
Дерево 1.25663760*10−6 1.00000043
Железо (чистота 99.8%) 6.3*10−3 5000
Железо (99.95% чистое Fe отожженное в водороде) 2.5*10−1 200000
Железо-кобальтовые сплавы 2.3*10−2 18000
Медь 1.256629*10−6 0.999994
Никель-цинковый феррит — магнит 2.0*10−5 – 8.0*10−4 16 – 640
Мартенситная нержавеющая сталь (отожженная) 9.42*10−4 — 1.19*10−3 750 – 950
Мартенситная нержавеющая сталь (закаленная) 5.0*10−5 — 1.2*10−4 40 – 95
NANOPERM® — магнитомягкий нанокристаллический сплав 1.0*10−1 80000
Неодимовый магнит 1.32*10−6 1.05
Никель 1.26*10−4 — 7.54*10−4 100 – 600
Пермаллой (сплав 80% никеля и 20% железа) 1.0*10−2 8000
Платина 1.256970*10−6 1.000265
Сарфир 1.2566368*10−6 0.99999976
Сверхпроводники
Углеродистая сталь 1.26*10−4 100
Ферритная нержавеющая сталь (отожженная) 1.26*10−3 — 2.26*10−3 1000 – 1800
Фторопласт 4, Ф-4, Teflon 1.2567*10−6 1

Магнитометр. Что это такое?

Как следует уже из самого названия, магнитометр – это прибор, предназначенный для измерения параметров магнитного поля и магнитных свойств отдельных материалов. В зависимости от того изменения показателей какого рода фиксирует устройство, его могут называть следующими терминами:

  • эрстедметр (меряет напряженность поля);
  • градиентометр (определяет полевой градиент);
  • тесламетр (показывает индукцию);
  • веберметр (определяет магнитный поток);
  • инклинатор или деклинатор (устанавливает направление поля);
  • коэрцитиметр (показывает коэрцитивную силу).

Когда работают мю-метры и каппа-метры, можно выяснить соответственно магнитную проницаемость и магнитную восприимчивость. А также существуют приборы для фиксации магнитного момента. Но есть и более узкое определение магнитометров – это аппараты, замеряющие напряженность, градиент и направление поля. Определение необходимых параметров производится различными способами.

Необходимо учитывать, что одни приборы фиксируют абсолютные значения полевых характеристик, а другие отражают изменение поля с течением времени или в разных точках пространства.

Принцип работы.

Схема магнитометра может сильно отличаться, но в любом случае он работает по одной и той же методике. Магнитное поле может быть охарактеризовано следующим:

  • вектор напряженности;
  • горизонтальная составляющая напряженности;
  • магнитное склонение;
  • магнитное наклонение.

Но есть еще одна важная характеристика магнитного поля – магнитная индукция. По направлению ее вектора определяется направление силы, воздействующей на северный полюс магнита. Чтобы понять, как все это работает, полезно рассмотреть устройство магнитометрического датчика HMC5883L от Honeywell. Меняющийся коэффициент усиления влияет на восприимчивость датчика. Для считывания данных предусмотрено 12 регистров с разрядностью 8.

Регистр режима задает основной сценарий действия: непрерывное измерение либо разовый замер и переход в режим ожидания. Если запрос идет не программно, а аппаратно, используется дублирование данных через вывод DRDY. Но не все так просто – требуется учитывать не только показания датчиков, но и воздействия на них различных помех.

Если проигнорировать этот момент, может оказаться так, что модуль сбился и измеряет совсем не то, что нужно.

Предположим, требуется произвести измерения удельной намагниченности насыщения. Образец, который нужно исследовать, и постоянный магнит крепятся на тонком стержне, соединенном с вибрационным узлом. Колебания стержня могут происходить с различной частотой, но в любом случае под углом 90 градусов к полю, создаваемому электромагнитом. Радиотехнические компоненты системы призваны усиливать, очищать и эффективно обрабатывать сигнал. Когда постоянный магнит и образец колеблются, появляется электродвижущая сила в особых катушках. Сами катушки позиционируют по отношению к постоянному магниту так, чтобы на их положение не влияли вибрационные колебания.

Но описанное устройство, как нетрудно понять по некоторым моментам, может применяться преимущественно в лабораторных условиях. Возможности его использования «в поле» существенно ограничены. Для полевых измерений предназначены уже совершенно другие магнитометры, которые не требуют изготовления и выделения образцов. Как именно работает такая техника – коммерческая тайна производителей. В любом случае, нужно ли производить измерения остаточной намагниченности или делать что-то еще, важно знать алгоритм калибровки методом наименьших квадратов.

Максимально упрощенно излагая суть этого метода (основанного на высшей математике), можно указать, что он подразумевает подбор функции, дающей значения, максимально близкие к полученным по итогам эксперимента. Сумма квадратов отклонений во всех критических важных точках должна быть как можно меньшей, в идеале – сведенной к нулю.

Обязательным условием для применения такого алгоритма является знание вектора магнитного поля земли. Если же вернуться к математической стороне дела, то можно сказать, что тут нужны линейные преобразования матриц в трехмерном пространстве. А отсюда следует, что придется использовать показания по трем осям сразу.

Немного отстранившись от всей этой зауми, можно разобраться, как действует магнитометр на основе тонкопленочных магниторезисторов. Такая техника выпускается ведущими иностранными фирмами. Магниторезисторы обычно размещают на одной кремниевой подложке и соединяют мостовым способом.

Поскольку сопротивление резисторов сложно подогнать при производстве, нельзя игнорировать напряжение смещения. Параметры датчиков очень сильно зависят от фактической температуры.

Диамагнетик.

Иногда ошибочно думают, что таким изолятором магнитного поля может служить диамагнетик . Но это не верно. Диамагнетик действительно ослабляет магнитное поле. Но он ослабляет магнитное поле только в толще самого диамагнетика, внутри диамагнетика. Из-за этого многие ошибочно думают, что если один или оба магнита замуровать в куске диамагнетика, то, якобы, их притяжение или их отталкивание ослабеет.

Но это не является решением проблемы. Во-первых, силовые линии одного магнита всё равно будут достигать другого магнита, то есть магнитное поле только уменьшается в толще диамагнетика, но не исчезает совсем. Во-вторых, если магниты замурованы в толще диамагнетика, то мы не можем их двигать и поворачивать относительно друг друга.

А если сделать из диамагнетика просто плоский экран, то этот экран будет пропускать сквозь себя магнитное поле. Причем, за этим экраном магнитное поле будет точно такое же, как если бы этого диамагнитного экрана не было бы вообще.

Это говорит о том, что даже замурованные в диамагнетик магниты не испытают на себе ослабления магнитного поля друг друга. В самом деле, ведь там, где находится замурованный магнит, прямо в объеме этого магнита диамагнетик попросту отсутствует. А раз там, где находится замурованный магнит, отсутствует диамагнетик, то значит, оба замурованных магнита на самом деле взаимодействуют друг с другом точно также, как если бы они не были замурованы в диамагнетике. Диамагнетик вокруг этих магнитов также бесполезен, как и плоский диамагнитный экран между магнитами.

Читайте также:  Стоимость монет ссср 1950 1991 таблица

Идеальный диамагнетик.

Нам нужен такой материал, который бы, вообще, не пропускал через себя силовые линии магнитного поля. Нужно чтобы силовые линии магнитного поля выталкивались из такого материала. Если силовые линии магнитного поля проходят через материал, то, за экраном из такого материала, они полностью восстанавливают всю свою силу. Это следует из закона сохранения магнитного потока.

В диамагнетике ослабление внешнего магнитного поля происходит за счет наведенного внутреннего магнитного поля. Это наведенное магнитное поле создают круговые токи электронов внутри атомов. При включении внешнего магнитного поля, электроны в атомах должны начать двигаться вокруг силовых линий внешнего магнитного поля. Это наведенное круговое движение электронов в атомах и создает дополнительное магнитное поле, которое всегда направлено против внешнего магнитного поля. Поэтому суммарное магнитное поле в толще диамагнетика становится меньше, чем снаружи.

Но полной компенсации внешнего поля за счет наведенного внутреннего поля не происходит. Не хватает силы кругового тока в атомах диамагнетика, чтобы создать точно такое же магнитное поле, как внешнее магнитное поле. Поэтому в толще диамагнетика остаются силовые линии внешнего магнитного поля. Внешнее магнитное поле, как бы, «пробивает» материал диамагнетика насквозь.

Единственный материал, который выталкивает из себя силовые линии магнитного поля, это сверхпроводник. В сверхпроводнике внешнее магнитное поле наводит такие круговые токи вокруг силовых линий внешнего поля, которые создают противоположно направленное магнитное поле в точности равное внешнему магнитному полю. В этом смысле сверхпроводник является идеальным диамагнетиком.

На поверхности сверхпроводника вектор напряженности магнитного поля всегда направлен вдоль этой поверхности по касательной к поверхности сверхпроводящего тела. На поверхности сверхпроводника вектор магнитного поля не имеет составляющую, направленную перпендикулярно поверхности сверхпроводника. Поэтому силовые линии магнитного поля всегда огибают сверхпроводящее тело любой формы.

Огибание сверхпроводника линиями магнитного поля.

Но это совсем не означает, что если между двумя магнитами поставить сверхпроводящий экран, то он решит поставленную задачу. Дело в том, что силовые линии магнитного поля магнита пойдут к другому магниту в обход экрана из сверхпроводника. Поэтому от плоского сверхпроводящего экрана будет только ослабление влияния магнитов друг на друга.

Это ослабление взаимодействия двух магнитов будет зависеть от того, на сколько увеличилась длина силовой линии, которая соединяет два магнита друг с другом. Чем больше длины соединяющих силовых линий, тем меньше взаимодействие двух магнитов друг с другом.

Это точно такой же эффект, как если увеличивать расстояние между магнитами без всякого сверхпроводящего экрана. Если увеличивать расстояние между магнитами, то длины силовых линий магнитного поля тоже увеличиваются.

Значит, для увеличения длин силовых линий, которые соединяют два магнита в обход сверхпроводящего экрана, нужно увеличивать размеры этого плоского экрана и по длине и по ширине. Это приведет к увеличению длин обходящих силовых линий. И чем больше размеры плоского экрана по сравнению с рассстоянием между магнитами, тем взаимодействие между магнитами становится меньше.

Взаимодействие между магнитами полностью исчезает только тогда, когда оба размера плоского сверхпроводящего экрана становятся бесконечными. Это аналог той ситуации, когда магниты развели на бесконечно большое расстояние, и поэтому длина соединяющих их силовых линий магнитного поля стала бесконечной.

Теоретически, это, конечно, полностью решает поставленную задачу. Но на практике мы не можем сделать сверхпроводящий плоский экран бесконечных размеров. Хотелось бы иметь такое решение, которое можно осуществить на практике в лаборатории или на производстве. (Про бытовые условия речи уже не идет, так как в быту невозможно сделать сверхпроводник.)

Источник

Магнитная проницаемость пермаллоя таблица

§ 40. Намагничивание стали. Магнитная проницаемость

Для усиления магнитного поля и придания ему определенной формы в различных электрических машинах и аппаратах широко применяют ферромагнитные материалы: железо, кобальт, никель и их сплавы — сталь и др.
Если ферромагнитный материал поместить в катушку и пропустить по ее виткам электрический ток, то под воздействием магнитного поля, созданного током, материал намагнитится. Это значит, что в материале образуется собственное магнитное поле, полученное в результате сложения магнитных полей (магнитных моментов) отдельных атомов.
Изменение силы тока в катушке приводит к изменению напряженности ее магнитного поля H, что вызывает изменение магнитной индукции В в сердечнике этой катушки.
На рис. 36 показаны графики изменения магнитной индукции в зависимости от напряженности намагничивающего магнитного поля. Такие графики называются кривыми намагничивания. Для различных материалов и их марок кривые намагничивания различны. При небольших значениях напряженности поля Н магнитная индукция в материале быстро увеличивается, намагничивание происходит примерно пропорционально изменению напряженности, а затем, по мере увеличения напряженности магнитного поля, возрастание магнитной индукции материала замедляется.

Состояние материала, при котором дальнейшее увеличение напряженности магнитного поля не приводит к возрастанию его намагниченности, называется магнитным насыщением.
Магнитные свойства материалов характеризуются их абсолютной магнитной проницаемостью μа. Она определяется отношением магнитной индукции В к напряженности магнитного поля Н и измеряется в генри/метр (гн/м)

Абсолютная магнитная проницаемость вакуума μа = 4π · 10 -7 гн/м. Для воздуха и других неферромагнитных материалов она незначительно отличается от μа и при технических расчетах принимается равной 4π · 10 -7 гн/м.
Так как абсолютная магнитная проницаемость для вакуума и указанных выше материалов практически одинакова, то μа называется магнитной постоянной μ.
Абсолютная магнитная проницаемость μа ферромагнитных материалов непостоянна и во много раз превышает магнитную проницаемость вакуума.
Число, показывающее, во сколько раз абсолютная магнитная проницаемость μа ферромагнитного материала больше магнитной постоянной μ, называется относительной магнитной проницаемостью μ или сокращенно магнитной проницаемостью (табл. 5).

Пример. Сталь в определенных условиях обладает абсолютной магнитной проницаемостью (μа = 0,0008792 гн/м. Вычислить относительную магнитную проницаемость μ этой стали.
Решение . Магнитная постоянная μ = 4π · 10 -7 гн/м, тогда относительная магнитная проницаемость

Как видно из кривых намагничивания (см. рис. 36), способность материалов намагничиваться — их магнитная проницаемость — в слабых магнитных полях велика, а затем с ростом индукции постепенно уменьшается.
Следовательно, магнитная проницаемость ферромагнитных материалов — величина изменяющаяся, зависящая от степени их намагничивания.

Наибольшая относительная магнитная проницаемость некоторых материалов

Кобальт
Сталь Трансформаторная
Никель
Пермаллой С

При одной и той же напряженности магнитного поля магнитная индукция в стали больше, чем в чугуне. Это объясняется тем, что магнитная проницаемость стали больше магнитной проницаемости чугуна.
Магнитная индукция прямо пропорциональна напряженности поля H и абсолютной магнитной проницаемости μа намагничиваемого материала:

B = μаH. (35)

Пример. Напряженность магнитного поля катушки H = 750 а/м, а абсолютная магнитная проницаемость сердечника μа = 0,0008792 гн/м. Определить магнитную индукцию сердечника.
Решение . Магнитная индукция В = μа Н = 0,0008792 · 750 = 0,65 тл. Так как 1 тл = 10 000 гс, то 0,65 тл = 6500 гс.

Источник

Adblock
detector