Меню

Логические квадраты логические задачи таблица



2.9. Логический квадрат

2.9. Логический квадрат

Отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата, который был разработан еще средневековыми логиками.

Как видим, вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия. Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т. е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О. Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения: Все люди изучали логику и Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А), а второе частноотрицательным (О), мы без труда устанавливаем отношение между ними с помощью логического квадрата – противоречие. Также суждения: Все люди изучали логику (А) и Некоторые люди изучали логику (I) находятся в отношении подчинения, а суждения: Все люди изучали логику (А) и Все люди не изучали логику (Е) находятся в отношении противоположности.

Как уже говорилось, важным свойством суждений, в отличие от понятий, является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, о которых идет речь в данном параграфе, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так если суждение вида А является истинным или ложным, то три других (I, Е, О) сравнимых с ним суждения (т. е. имеющих сходные с ним субъекты и предикаты) в зависимости от этого (т. е. от истинности или ложности суждения вида А) тоже являются истинными или ложными. Например, если суждение вида А: Все тигры – это хищники является истинным, то суждение вида I: Некоторые тигры – это хищники также является истинным (если все тигры – хищники, то и часть из них, т. е. некоторые тигры – это тоже хищники), суждение вида Е: Все тигры – это не хищники является ложным, и суждение вида О: Некоторые тигры – это не хищники также является ложным. Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).

Далее представлены все случаи отношений между истинностными значениями простых сравнимых суждений.

1. Если суждение вида А является истинным, то суждение вида I также является истинным, а суждения вида Е и О являются ложными.

2. Если суждение вида А является ложным, то суждение вида I является неопределенным по истинности (т. е. может быть как истинным, так и ложным, в зависимости от того, о чем будет идти в нем речь), суждение вида Е является также неопределенным по истинности, а суждение вида О является истинным. (Далее будем применять сокращения, например, вместо выражения «суждение вида А» будем говорить «А», а вместо «является истинным» – просто «истинно»).

3. Если Е истинно, то А ложно, I ложно, О истинно.

4. Если Е ложно, то А неопределенно по истинности, I истинно, О неопределенно по истинности.

5. Если I истинно, то А неопределенно по истинности, Е ложно, О неопределенно по истинности.

6. Если I ложно, то А ложно, Е истинно, О истинно.

7. Если О истинно, то А ложно, Е неопределенно по истинности, I неопределенно по истинности.

8. Если О ложно, то А истинно, Е ложно, I истинно.

Используя рассмотренные правила, можно делать выводы об истинности простых сравнимых суждений с помощью логического квадрата (или, как часто говорят в логике, – по логическому квадрату). Выше был приведен пример таких выводов на основе суждения вида А: Все тигры являются хищниками, где из его истинности вытекали определенные истинностные значения других суждений – I, Е, О. Рассмотрим еще один пример. Возьмем суждение вида Е: Все треугольники не являются квадратами и сделаем из его истинности выводы об истинностных значениях суждений А, I, О. Когда данное суждение вида Е истинно (см. правила выше), то суждение вида А: Все треугольники являются квадратами ложно, суждение вида I: Некоторые треугольники являются квадратами также ложно, а суждение вида О: Некоторые треугольники не являются квадратами истинно (если все треугольники не являются квадратами, то и часть треугольников, т. е. некоторые треугольники также не являются ими).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

IV. Квадрат коммуникации и генеративная матрица

IV. Квадрат коммуникации и генеративная матрица Генеративная матрица высказывания проходит трехэтапный генезис и имеет четыре ключевых пункта, которые лежат на кресте пересечения двух осей — вертикальной оси Идеальности и горизонтальной оси Реальности, в результате

Исторический и логический методы

Исторический и логический методы По большому счету эмпирический уровень научного познания сам по себе не достаточен для проникновения в сущность вещей, в том числе в закономерности функционирования и развития общества. На определенном этапе, когда накоплено уже более

Логический позитивизм Карнапа

Логический позитивизм Карнапа Логический позитивизм — это видоизмененная форма эмпиризма. Эмпиризм в чистом виде — это учение о том, что все знание мы получаем из чувственного опыта. Логический позитивизм выглядит слабее его в одном важном пункте, но зато сильнее в

Головоломный квадрат

Головоломный квадрат Изображенные на рисунке двадцать кругов образуют крест. Сколько квадратов можно найти в этом кресте, если считать, что любые четыре круга являются углами квадрата? Посмотрите на схему, и вы поймете, что имеется в виду. Четыре круга с буквой А

2. Логический позитивизм

2. Логический позитивизм В 1922 году на кафедре натуральной философии Венского университета, которую после смерти Э. Маха возглавил профессор М. Шлик, собралась группа молодых ученых, поставивших перед собой смелую цель — реформировать науку и философию. Эта группа вошла

Магический квадрат

Магический квадрат Предлагаем наимоднейший способ построить так называемый «магический квадрат». Из колоды игральных карт вытащите десять одной масти — от туза (примем его за единицу) до десятки — и сложите из них квадрат. Причем сложите так, чтобы сумма чисел на

Распили квадрат

Распили квадрат В один прекрасный день Пит Распил ввалился в кафе «Ложки и плошки» и сообщил всем о головоломке, которую только что услыхал от торговца древесиной. Тот показал Питу квадратную деревянную доску с маленьким отверстием в углу. «А теперь, — сказал торговец

2. Логический обвал

2. Логический обвал — То, что может быть продемонстрировано или что требуется доказать, есть конечное познание чего-то особенного. Экзистенция и трансценденция, в смысле этого бытия, не существуют. Если мы мыслим о них, то мысль принимает логические формы, которые

14. Тетрактис и квадрат четырех[119]

14. Тетрактис и квадрат четырех[119] В ходе наших исследований нам уже не раз случалось говорить о пифагорейском Тетрактисе, и мы тогда же привели его числовую формулу: 1+2+3+4=10, указав на связь, непосредственно соединяющую денер с кватернером. Известно совершенно особое

§ 4. Традиционный квадрат противопоставлений

§ 4. Традиционный квадрат противопоставлений Традиционное понимание противопоставления между суждениями отличается от предложенного нами понимания. Поскольку в традиционном подходе все суждения были разложимы на субъект и предикат, противопоставлялись только

ЧТО ТАКОЕ ЛОГИЧЕСКИЙ ПАРАДОКС?

ЧТО ТАКОЕ ЛОГИЧЕСКИЙ ПАРАДОКС? Никакого исчерпывающего перечня логических парадоксов не существует. Рассмотренные логические парадоксы – это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем будут открыты и многие другие

«Квадрат ресурсов»: ищите узел проблемы

«Квадрат ресурсов»: ищите узел проблемы Если вы затрудняетесь, какие пункты и этапы вам нужно обдумать, имеет смысл воспользоваться стандартной схемой «Четыре блока успеха: Люди, МТБ (материально-техническая база), Деньги и Время». Тут имеется в виду, что для любого

Читайте также:  Статистические критерии для таблиц сопряженности

Логический позитивизм

Логический позитивизм В период между первой и второй мировыми войнами были выдвинуты новые философские идеи. Многие из них были стимулированы развитием неклассической физики и стали предметом серьезного эпистемологического анализа со стороны логического позитивизма.

15. ИНФИНИТЕЗИМАЛbНО–ЛОГИЧЕСКИЙ СЛОВАРb

15. ИНФИНИТЕЗИМАЛbНО–ЛОГИЧЕСКИЙ СЛОВАРb На этом мы закончим наше краткое сообщение о применении метода бесконечно–малых к логике. Вернее, это не сообщение, а только предложение, только скромный намек на ту область, которая не может не быть огромной. Логика и математика не

Возведение в квадрат и самоусиление

Возведение в квадрат и самоусиление Есть особенно интересный вид умножения, называемый возведением в квадрат, который дает нам подсказки относительно того, как работать с нашими собственными умами. Возведение в квадрат будет очень важно позднее, когда мы будем изучать

Перевоплощение и эксперимент возведения в квадрат

Перевоплощение и эксперимент возведения в квадрат Для начала вспомните недавнее сновидение. Затем выберите из этого сновидения какую-либо фигуру – человека, дерево или что угодно еще.Теперь представьте себе, что эта фигура – основа процесса, начало ее собственной

Источник

Подход к решению «логических квадратов»

Светлана Губарькова
Подход к решению «логических квадратов»

Невозможно научить детей решать «логические квадраты», не пройдя путь от «простого к сложному». Знакомя детей с «логическими квадратами», учим раскладывать фигуры в таблице с ориентировкой сначала на один признак, затем на два и на три. В литературных источниках предлагается найти и вставить в таблицу одну,две или несколько недостающих фигур: дети, анализируя расположение фигур по рядам и столбикам, находят ответ. Я предлагаю иной подход: не только научить ребят находить недостающие фигуры, но и самим составлять эти таблицы, ориентируясь на «правило диагонали». При решении данной задачи с ориентировкой по двум признакам, используется «правило двух диагоналей».

Решение задач с ориентировкой по одному признаку, используя «правило диагонали».

Рассмотреть все предложенные для выкладывания в таблице фигуры, найти признак, по которому можно разделить 9 предметов на 3 группы (например, 3 треугольника красного цвета, 3 треугольника синего цвета, 3 треугольника желтого цвета).

В центральную клетку выкладываем треугольник синего цвета.

Оставшиеся два синих треугольника выкладываем по диагонали. В результате, в каждом ряду (столбике) уже находятся по одной фигуре.

Далее раскладываем треугольники красного цвета, ориентируясь на ряды и столбики.

В оставшиеся клетки раскладываем треугольники желтого цвета. Таблица заполнена.

Проверяем правильность расположения фигур, рассматривая ряды и столбики.

Решение задач с ориентировкой по двум признакам, используя «правило двух диагоналей».

Рассмотреть все предложенные для выкладывания в таблице фигуры. Например, квадраты, круги, треугольники синего, красного и желтого цвета. Найти признаки,по которым можно разделить эти 9 фигур на 3 группы: цвет – синий, красный, желтый и форма – круг, квадрат, треугольник.Здесь может быть два варианта:

• разложить все фигуры по форме (квадраты – желтый, красный, синий; треугольники — желтый, красный, синий; круги – желтый, красный, синий;

разложить все фигуры по цвету: красные – круг, квадрат, треугольник; желтые — круг, квадрат, треугольник; синие — круг, квадрат, треугольник.

В центральную клетку выкладываем треугольник красного цвета.

По диагонали выкладываем оставшиеся треугольники (синего и желтого цвета).

По второй диагонали выкладываем все фигуры красного цвета (квадрат, круг).

Осталось найти место желтым и синим фигурам – квадрату и кругу.

Проверяем правильность расположения фигур, рассматривая ряды и столбики.

Этот принцип раскладывания фигур, использую и при изучении лексических тем. Дети с большим удовольствием размещают на ковролине яркие картинки, сделанные на картоне с помощью самоклеящейся пленки.

Взаимодействие с семьями воспитанников по решению задач педагогической работы здоровьесберегающей направленностиВзаимодействие с семьями воспитанников по решению задач педагогической работы здоровьесберегающей направленности Семинар для воспитателей «Я не боюсь ещё и ещё раз повторять: забота о здоровье – это важнейший труд воспитателя. От жизнерадостности,.

Глава 2. Практические аспекты обучения дошкольников решению арифметических задач. 2.1. Методическая система обучения дошкольников решению арифметических задач В подготовительной группе перед воспитателем стоит новая задача.

Инновационные подходы в работе с родителями к решению проблем духовно-нравственного и физического здоровья Сегодня, как и раньше, взрослые нуждаются в знаниях, позволяющих им справиться с возникающими проблемами в воспитании детей. Так как мы.

Конспект НОД по решению экологических задач на занятиях по ознакомлению с пейзажной живописью для старшей группыКонспект НОД по решению экологических задач на занятиях по ознакомлению с пейзажной живописью для старшей группы Цель: решение экологических задач на занятиях по ознакомлению дошкольников с изобразительным искусством (пейзажная живопись) Задачи: — Продолжать.

Методические рекомендации по обучению дошкольников решению задач Решение задач вызывает большой интерес у ребенка дошкольного возраста. Они привлекают детей своей загадочностью и поиском неизвестного,.

Методика обучения дошкольников составлению и решению задач МАДОУ «Детский сад № 9» г. Балаково Саратовской области Николина О. А. воспитатель Методика обучения дошкольников составлению и решению.

Конспект урока математики в 5 классе «Обучение решению задач с помощью уравнений» В рамках ФГОС особое внимание при изучении математики занимают способы организации активного обучения, например, при решении задач с помощью.

Особенности обучения дошкольников решению арифметических задач Актуальность темы. Изучение математики в дошкольном учреждении должно создать прочную основу для дальнейшего обучения этому предмету. Поэтому.

«Ждем гостей». Конспект занятия по решению арифметических задач и примеров«Ждем гостей». Конспект занятия по решению арифметических задач и примеров Познавательное развитие Тема: «Ждем гостей». (решение арифметических задач и примеров) Подготовила воспитатель группы «Почемучка» д/с.

Комплексный подход к решению задач коррекции личности ребёнка с ОВЗ в условиях пребывания в школе-интернате Введение «Истоки способностей и дарования детей — на кончиках пальцев. От пальцев, образно говоря, идут тончайшие нити – которые питают.

Источник

Решение логических задач с помощью таблиц

В книге “Занимательная логика” Э.Кольмана и О.Зиха имеется много интересных логических задач. Вот одна из них.

1. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. “Замечательно, что один из нас имеет белые, один черные и один рыжие волосы, но ни у одного из нас нет волос того цвета, на который указывает его фамилия”, — заметил черноволосый. “Ты прав”, — сказал Белов. Какой цвет волос у художника?

Решение. Для решения подобных логических задач полезно составить таблицу.

Белов Чернов Рыжов
блондин
брюнет
рыжий
Белов Чернов Рыжов
блондин +
брюнет +
рыжий +

В бутылке, стакане, кувшине и банке находятся молоко, лимонад, квас и вода. Известно, что вода и молоко не в бутылке, сосуд с лимонадом стоит между кувшином и сосудом с квасом, в банке – не лимонад и не вода. Стакан стоит около банки и сосуда с молоком.

Куда налита каждая жидкость?

бутылка стакан кувшин банка
Молоко +
Лимонад +
Квас +
вода +

3. В течение последних четырех лет Алексеев, Фомин, Дементьев и Иванов получали очередной отпуск в мае, июне, июле или в августе. Причем, если один из них отдыхал в мае, то другой — в июне, третий – в июле, а четвертый – в августе. Каждый их них получал отпуск в эти четыре года в разные месяцы. Так в первый год Дементьев отдыхал в июле, во второй год – в августе. Алексеев во второй год отдыхал в мае, Иванов в третий год – в июне, а Фомин в четвертый год – в июле.

Кто в каком месяце отдыхал в каждом из этих четырех лет?

1 –й год 2 –й год 3 –й год 4 –й год
Алексеев июнь май июль август
Фомин май июнь август июль
Дементьев июль август май июнь
Иванов август июль июнь май

Три подруги вышли в белом, зеленом и синем платьях. Их туфли тоже были белого, зеленого и синего цветов. Известно, что только у Ани цвет платья и туфель совпадали. Ни платье, ни туфли Вали не были белыми, Наташа была в зеленых туфлях.

Определить цвет платья и туфель каждой из подруг.

Решение: можно решать, составляя две таблицы, а можно таблицы объединить в одно целое.

Аня Валя Наташа Аня Валя Наташа
Белые туфли + Белое платье +
Зеленые туфли + Зеленое платье +
Синие туфли + Синее платье +

5. Три друга – спортсмена — Алеша, Вася и Сережа – учились в одном классе. Каждый из них увлекался двумя видами спорта из следующих шести: футбол, волейбол, баскетбол, теннис, плавание и велоспорт. Известно, что:

  • все трое – Сережа, теннисист и пловец ходят из школы домой вместе,
  • пловец и футболист – соседи по дому,
  • Алеша самый старший из троих, а теннисист старше велосипедиста,
  • Наиболее интересные спортивные передачи по телевизору все трое – Алеша, велосипедист и волейболист – смотрят вместе.

Надо узнать, кто каким спортом увлекается.

  • Алеша – баскетбол и плавание,
  • Вася – волейбол и теннис,
  • Сережа – футбол и велоспорт.

6. На школьном вечере четыре юноши: Валентин, Николай, Владимир и Алексей все из разных классов, и их одноклассницы танцевали танец, но каждый юноша танцевал не своей одноклассницей.

Лена танцевала с Валентином, Аня – с одноклассником Наташи, Николай — с одноклассницей Владимира, а Владимир танцевал с Олей.

Танцевали Лена с Валентином, Оля с Владимиром, Аня с Николаем, Наташа с Алексеем.

Учатся в одних классах Аня и Владимир, Оля и Валентин, Лена и Алексей, Наташа и Николай.

Кто с кем танцевал?

А вот эту задачу придумали дети после очередного занятия математического кружка в 6 классе.

7. В одном поселке живут три товарища: Саша, Коля и Петя, которые осваивают новую профессию. Один из них готовится стать дизайнером, другой — садоводом, третий — парикмахером. Кроме того, все они имеют и другую профессию: один строитель, другой – руководитель драмкружка, а третий ведет дискотеки. В разное время они сказали разные фразы:

  • Петя, ты меня не жди, я должен доделать прическу,
  • Эх, Коля, вести дискотеку – сложно, но мне очень нравится,
  • Завтра, Коля, ко мне не приходи, я буду на конкурсе парикмахеров,
  • На днях я получу новый диск “ Комнатные растения”.Для меня, как для будущего садовода, он будет интересным и полезным.
  • Наблюдал я вчера за тобой во время репетиции и подумал, что тебе поставить пьесу не легче, чем мне вывести новый сорт роз.
  • С применением новых технологий в строительстве я совершенно не знаком, хотя как дизайнеру надо сними познакомиться.

Попробуйте по этим фразам установить, кто из друзей осваивает какую профессию и какую профессию они уже имеют?

  • Саша – парикмахер и строитель,
  • Коля – дизайнер и руководитель драмкружка,
  • Петя — садовод и ведущий дискотек.

Три пирата: Нытик, Стрелец и Барс зарыли свои сокровища на одном острове. Один из них зарыл возле дерева лимона, другой – банана, а третий – абрикоса. Ёмкость для хранения тоже у каждого была своя: один использовал сундучок, второй – большую морскую ракушку, а третий – кожаный мешочек.

Определите имя пирата, а также где и чем хранил свои сокровища каждый из них, если известно, что:

  1. Ракушку использовал не Нытик.
  2. Тот, кто закопал сокровища под абрикосом, использовал мешочек.
  3. Барс закопал сундучок, но не под лимоном.
банан абрикос лимон сундучок ракушка мешочек
Нытик
Стрелец
Барс
сундучок
ракушка
мешочек
имя дерево тара
Нытик абрикос мешочек
Стрелец лимон ракушка
Барс банан сундучок

9. После традиционного вечера встречи с бывшими выпускниками школы в стенгазете появилась заметка о трех бывших учениках школы. В этой заметке было написано, что Иван, Борис и Андрей стали учителями. Теперь они преподают разные дисциплины: один – математику, второй – физику, третий – химию. Живут они тоже в разных городах: Минске, Витебске и Харькове. В заметке было еще написано, что первоначальные их планы осуществились не полностью: Иван работает не в Минске, Андрей – не в Витебске; житель Минска преподает не математику, Андрей преподает не физику. Повезло только жителю Витебска: он преподает любимую им химию. Кто есть кто?

  • Иван – химик — Витебск
  • Борис — физик — Минск
  • Андрей — математик – Харьков

10. Арташ, Отар, Гурам и Сурен занимаются в разных спортивных секциях. Один из них играет в баскетбол, другой – в волейбол, третий – в футбол, четвертый – в теннис. У них различные увлечения: один из них любит кино, другой – театр, третий – эстраду, а четвертый – цирк. Арташ не играет ни в волейбол, ни в баскетбол. Отар играет в футбол и любит театр. Сурен не играет в волейбол. Тот из ребят, кто играет в волейбол, любит ходить в кино, а тот, кто играет в баскетбол, не любит цирк. Какое у каждого из них увлечение, и каким видом спорта занимается каждый?

  • Арташ – теннис – цирк, Отар – футбол – театр,
  • Гурам – волейбол – кино, Сурен – баскетбол – эстрада.

Год назад с нашего двора первый раз в первый класс пошли 5 мальчиков. Их имена: Петя, Коля, Ваня, Гена и Миша . Получилось так, что все пятеро попали в разные классы: один в класс “А”, другой – в “Б”, третий – в “В”, четвертый — в “Г ”, пятый – в “Д”. Каждому из ребят досталась в качестве классного руководителя добрая учительница: Лидия Михайловна, Елена Анатольевна. Екатерина Кирилловна. Татьяна Григорьевна и Виктория Николаевна. Дети учились прекрасно, напротив их фамилий ( Анисин, Белов, Кукушкин, Степанов и Харитонов) всегда были практически одни пятерки.

Определите имя, фамилию, класс и добрую учительницу для каждого из первоклашек, если известно, что

  1. Ваня учится у Татьяны Григорьевны и его фамилия не Степанов.
  2. В классе “Д” преподает не Екатерина Кирилловна.
  3. Коля учится в классе “Б”. Он старше на 1месяц, чем Белов, и младше на 12 дней, чем тот, кто учится у Татьяны Григорьевны.
  4. Елена Анатольевна преподает в классе “Г” и у нее нет ученика по фамилии Белов.
  5. Харитонов Гена дружит с Петей и с тем, кто ходит в класс “А”.
  6. Кукушкин учится в классе “А”. Его учительница не Лидия Михайловна и не Екатерина Кирилловна.
  7. Анисин учится в классе “В” и его имя не Петя и не Миша.
фамилия имя учительница класс
Анисин Ваня Татьяна Григорьевна В
Белов Петя Лидия Михайловна Д
Кукушкин Миша Виктория Николаевна А
Степанов Коля Елена Анатольевна Б
Харитонов Гена Елена Анатольевна Г

На математическую олимпиаду в город Киров поехало четыре девятиклассника: Лева, Коля, Миша и Петя. В первый день они решили позавтракать в разных местах: один пошел в кафе, другой – в столовую, третий – в закусочную, четвертый – в буфет. После завтрака они снова собрались вместе. Разговор, естественно, зашел о том, кто как позавтракал. Выяснилось, что все они пили разные напитки, так как в каждом из этих мест, где они завтракали, оказалось в наличии только по одному напитку: в одном месте – только кофе, в другом – только молоко, в третьем – только ряженка, в четвертом – только чай. В буфете, например, было только молоко, а в столовой не было ряженки. Петя рассказал, что он был в столовой, но пил там не чай. Лева рассказал, что он пил ряженку, а Миша сказал, что он не был ни в закусочной, ни в буфете. Кто из ребят где завтракал и что пил?

  • Лева – закусочная – ряженка,
  • Коля – буфет – молоко,
  • Миша – кафе – чай,
  • Петя – столовая – кофе.

Задачи для самостоятельного решения.

1. В начале учебного года пятиклассники избрали старосту, председателя совета отряда, звеньевых первого, второго и третьего звеньев. Их имена: Аня, Боря, Вася, Гриша и Дина. Звеньевая первого звена решила подружиться со звеньевой второго звена. Дина удивилась, узнав, что председатель совета отряда и звеньевая второго звена брат и сестра. Гриша дружит с председателем совета отряда и со старостой. У Васи нет сестер.

Назовите имена каждого из избранных.

  • Вася – староста, Боря – председатель отряда,
  • Дина – звеньевая 1 –го звена, Аня – 2-го звена, Гриша — 3-го звена.

2. Петя, Гена, Дима и Вова занимаются в детской спортивной школе в разных секциях: гимнастической, баскетбольной, волейбольной и легкой атлетики. Петя, Дима и волейболист занимаются в одном классе. Петя и Гена на тренировки ходят пешком вместе, а гимнаст ездит на автобусе. Легкоатлет не знаком ни с баскетболистом, ни с волейболистом.

Читайте также:  Еды таблица 2021 года

Кто в какой секции занимается?

  • Петя – баскетболист, Гена – волейболист,
  • Дима – гимнаст. Вова – легкоатлет.

3. Пять человек живут в одном городе. Их имена: Леонид, Владимир, Николай, Олег и Петр. Их Фамилии: Степанов, Борисов, Козин, Дроздов и Истомин. Известно, что

  • Козин знаком только с двумя, а с Козиным знаком только один человек,
  • Петр знаком со всеми, кроме одного, а Леонид знает только одного из всех,
  • Николай и Истомин знают друг друга с детства.
  • Владимир, Николай и Олег знакомы между собой,
  • Дроздов и Владимир незнакомы,
  • Олег, Николай и Борисов Часто вместе ходят на работу,

Назовите имена и фамилии каждого.

Ответ. Борисов Владимир, Степанов Николай, Козин Леонид, Дроздов Петр. Истомин Олег.

Источник

20 сложных логических задач для детей

Логические задачи для детей тренируют мышление и внимание, учат рассуждать. Некоторые из них нужно решать, составляя специальную таблицу.

Предлагаем подборку олимпиадных задач с ответами – как совсем сложных, так и попроще. Эти загадки точно увлекут детей даже в дни каникул.

логические задачи

Миша, Коля и Настя решили помочь маме собрать урожай: смородину, крыжовник и вишню. Каждый из них собирал что-то одно. Кто что собирал, если известно, что больше всего было собрано смородины, Миша не собирал крыжовник, а Миша и Коля вдвоём набрали ягод меньше, чем Настя?

Миша – вишню, Коля – крыжовник, Настя – смородину.

Володя, Дима и Петя устроили соревнование. Один из мальчиков решил 12 примеров, второй – 13, а третий – 14. Сколько примеров решил каждый мальчик, если Петя решил примеров меньше, чем Дима, а Дима меньше, чем Володя?

Дима – 13, Володя – 14, Петя – 12.

Отца одного гражданина зовут Николай Петрович, а сына – Алексей Владимирович. Как зовут гражданина?

Пете и Коле купили по коробке конфет. В каждой коробке находится 12 конфет. Петя из своей коробки съел несколько конфет, а Коля из своей коробки съел столько конфет, сколько осталось в коробке у Пети. Сколько конфет осталось на двоих у Пети и Коли?

У трёх подружек – Вики, Ани и Лены – очень красивые куртки – синяя и красная с капюшонами и синяя без капюшона. У кого какая куртка, если Аня и Лена ходят с капюшонами, а у Ани и Вики куртки синего цвета?

У Вики – синяя. У Ани – синяя с капюшоном. У Лены – красная с капюшоном.

Хоккейная команда провела три матча, забив в ворота противника всего 3 шайбы и пропустив 1 шайбу. Один матч она выиграла, другой свела вничью, а третий проиграла. С каким счётом закончился каждый матч?

Знайка, Незнайка и Пилюлькин живут в домах №14, 17, 19. В каком доме живет каждый, если Знайка не живет в доме 19 и 17, а Незнайка не живет в доме 19 ?

Знайка в 14 доме
Незнайка в 17 доме
Пилюлькин в 19 доме

Встретились три подруги — Белова. Краснова и Чернова. На одной из них было черное платье, на другой — красное, на третьей — белое. Девочка в белом платье сказала Черновой: «Нам троим надо поменяться платьями, а то цвета наших платьев не соответствуют нашим фамилиям». Кто в какое платье был одет?

Краснова — в белом платье
Чернова — в красном платье
Белова — в черном платье.

Жили-были две фигуры: Круг и Квадрат. На их улице было 3 дома: один дом был с окном и трубой, другой — с окном, но без трубы, а третий — с трубой, но без окна. Каждая фигура жила в своем доме. Круг и Квадрат жили в домах с окнами. Квадрат любил тепло и часто топил печку.
Кто в каком доме жил?

Квадрат живет в доме с окном и трубой, а Круг — в доме с окном, но без трубы.

логические задачи

Коля, Боря, Вова и Юра заняли первые четыре места в спортивном соревновании. На вопрос, какие места они заняли, они ответили:

  • «Коля не занял ни первое, ни четвертое места».
  • «Боря занял второе место».
  • «Вова не был последним».

Какое место занял каждый мальчик?

Места распределились следующим образом: первое — Вова, второе — Боря, третье — Коля, четвертое — Юра.

логические задачи

Каждый ученик в классе изучает либо английский, либо французский язык, либо оба эти языка. Английский язык изучают 25 человек, французский — 27 человек, а то т и другой — 18 человек. Сколько всего учеников в классе?

В классе 34 ученика.

Витя, Саша и Андрей смастерили из бумаги кораблик, змея и аиста. Какую игрушку сделал каждый мальчик, если Витя не сделал кораблика и змея, а Саша не делал кораблик?

Саша — змея, Витя – аиста, Андрей – кораблик.

Ваня живет выше Пети, но ниже Сени, а Коля живет ниже Пети. На каком этаже четырёхэтажного дома живёт каждый из них?

Коля на 1-м, Петя на 2-м, Ваня на 3-м, Сеня на 4-м.

В семье четверо детей, им 5, 8, 13 и 15 лет, а зовут их Таня, Юра, Света и Лена. Сколько лет каждому из них, если одна девочка ходит в детский сад, Таня старше, чем Юра, а сумма лет Тани и Светы делится на 3?

Тане 5 лет, Юре 8 лет, Свете 13 лет, Лене 15 лет.

Агенту необходимо было проникнуть на одну “закрытую” вечеринку. Пропуском внутрь служило особое слово-пароль. Агент спрятался неподалеку от входа и стал прислушиваться. На вопрос охранника “Двадцать два?” первый посетитель ответил “Одиннадцать!” и был впущен внутрь. На вопрос “Двадцать восемь?” следующий посетитель ответил “Четырнадцать!” и также был впущен внутрь. “Всего-то делов”, — подумал агент, и на вопрос охранника: “Сорок два?” — смело ответил “Двадцать один!” И тут же был изгнан прочь как чужак. Каким должен был быть правильный ответ?

Правильный ответ: “Восемь” – суммарное количество букв в словах произносимых охранником.

Петя, Вася и Маша остались дома одни. Кто-то из них ел варенье. На вопрос мамы, кто это сделал, они сказали:

  • Петя: «Я не ел. Маша тоже не ела.»
  • Вася: «Маша действительно не ела. Это сделал Петя»
  • Маша: «Вася врет. Это он съел.»

Выясните, кто ел варенье, если известно, что двое из них оба раза сказали правду, а третий один раз соврал, а один раз сказал правду.

Варенье ел Вася.

По обвинению в ограблении перед судом предстали Иванов, Петров и Сидоров. Следствием установлено следующее:

  1. Если Иванов невиновен или Петров виновен, то Сидоров виновен.
  2. Если Иванов невиновен, то Сидоров невиновен.

Виновен ли Иванов?

Иванов виновен в ограблении.

Три дочери писательницы Дорис Кей — Джуди, Айрис и Линда, тоже очень талантливы. Они приобрели известность в разных видах искусств — пении, балете и кино. Все они живут в разных городах, поэтому Дорис часто звонит им в Париж, Рим и Чикаго.

  • Джуди живет не в Париже, а Линда — не в Риме;
  • парижанка не снимается в кино;
  • та, кто живет в Риме, певица;
  • Линда равнодушна к балету.

Где живет Айрис, и какова ее профессия?

Айрис балерина. Она живет в Париже.

Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: «Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский». Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей?

Сергей изучает китайский язык, Михаил — японский, Вадим — арабский.

Алеша, Боря и Гриша нашли в земле сосуд. Рассматривая удивительную находку, каждый высказал по 2 предположения:

  • Алеша: «Этот сосуд греческий и изготовлен в V веке».
  • Боря: Этот сосуд финикийский и изготовлен в III веке».
  • Гриша: «Этот сосуд не греческий и изготовлен в IV веке».

Учитель истории сказал ребятам, что каждый из них прав только в одном из двух предположений.

Источник

Adblock
detector