Меню

Липиды состав и функции таблица

Липиды состав и функции таблица

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

Липиды организма человека — это, главным образом, нейтральные сложные эфиры глицерина и высших жирных кислот — триглицериды, фосфолипиды и стерины. Высшие жирные кислоты, входящие в состав сложных липидных молекул в виде углеводородных радикалов, бывают насыщенными и ненасыщенными, содержащими одну и более двойных связей. Липиды играют в организме энергетическую и пластическую роль. По сравнению с молекулами углеводов и белков молекула липидов является более энергоемкой. Поэтому при окислении липидов в организме образуется больше молекул АТФ и тепла. За счет окисления жиров обеспечивается около 50 % потребности в энергии взрослого организма.

Запасы нейтральных жиров-триглицеридов в жировых депо человека в среднем составляют 10—20 % массы его тела. Из них около половины локализуется в подкожной жировой клетчатке. Кроме того, значительные запасы нейтрального жира откладываются в большом сальнике, околопочечной клетчатке, в области гениталий и между мышцами. Жиры, откладываясь в жировых депо, служат долгосрочным резервом питания организма.

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

Нарушения обмена липидов у детей приводит к различным расстройствам. Особенно актуально нарушение обмена жиров в жаркое время года, что грозит психическими расстройствами. Жиры являются источником образования эндогенной воды. При окислении 100 г нейтрального жира в организме образуется около 107 г воды. Если в удовлетворении энергетических потребностей организма основную роль играют нейтральные молекулы жира (триглицериды), то пластическая функция липидов в организме осуществляется, главным образом, за счет фосфолипидов, холестерина, жирных кислот. Эти липидные молекулы являются структурными компонентами клеточных мембран (липопротеинов) и предшественниками синтеза стероидных гормонов, желчных кислот и простагландинов.

Клеточные липиды

В состав клеточных липидов входят фосфолипиды и холестерин, являющиеся необходимыми структурными компонентами поверхностной и внутриклеточных мембран. Триглицериды откладываются в клетках в виде жировых капель, формируя жировые депо. Последние являются не инертной массой, а активной динамической тканью, в которой запасенные жиры подвергаются постоянному расщеплению и ресинтезу.

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

При действии на организм холода, в состоянии голода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление (липолиз) запасенных триглицеридов. Образующиеся при этом неэстерифицированные жирные кислоты используются в организме как энергодающие или как пластические вещества, необходимые для синтеза сложных липидных молекул. В условиях покоя после приема пищи происходят ресинтез и отложение нейтральных липидов в подкожной жировой клетчатке, брюшной полости, мышцах.

Источник



Жир — состав, свойства и роль в диете

Жиры или липиды плохо растворимы в воде, но растворимы в органических растворителях. Термин «жир» чаще всего используется для обозначения пищи и липидного обмена. Около 90% жиров в пище — триглицериды. Другие типы жиров включают холестерин, фосфолипиды, стерины и каротиноиды

Жиры содержат три типа жирных кислот: насыщенные, мононенасыщенные и полиненасыщенные. Именно их соотношение определяет диетическую ценность.

Содержание статьи

  1. Что такое липиды
  2. Функции жира в организме
  3. Триглицериды
  4. Фосфолипиды
  5. Жирные кислоты
  6. Трансизомерные кислоты
  7. Стерины
  8. Животные и растительные жиры в диете

Что такое липиды

Липиды — это различные классы соединений, таких как стероиды, жиры, сфинголипиды и т.п. Липиды включены в биологические мембраны и, следовательно, от них зависит проводимость мембраны, передача нервных импульсов и образование межклеточных связей.

Они образуют основные запасы энергии клеток. Также липиды — источник эндогенной воды. Они делятся на гидролизуемые и негидролизуемые. К последним относятся терпены и стероиды.

Классификация гидролизуемых липидов намного сложнее. Они делятся на:

  • обычные, включающие триглицериды (сложные эфиры глицерина и жирных кислот);
  • воски — сложные эфиры длинноцепочечных жирных кислот и длинноцепочечных одноатомных спиртов.

К сложным липидам относятся соединения, которые помимо жирных кислот и спирта содержат молекулы других веществ.

Функции жира в организме

Липиды являются концентрированными источниками энергии. В сутки при нормальном питании потребляется около 100 г липидов. Основные пищевые липиды — триглицериды. С пищей организму необходимо получать липиды животного и растительного происхождения — полиненасыщенные жирные кислоты.

  • источник энергии – 1 грамм жира выделяет 9 ккал;
  • источник незаменимых жирных кислот;
  • переносчик жирорастворимых витаминов A, D, E и K;
  • улучшитель вкуса и внешнего вида пищи.

Некоторые типы жиров важны для производства стероидных гормонов, интерлейкинов, тромбоксанов и простагландинов.

Холестерин необходим для производства желчных кислот, которые переваривают жиры.

Триглицериды

Триглецириды — это нейтральные жиры — сложные эфиры глицерина и жирных кислот. Это резервные жиры, которые являются основным источником эндогенной энергии. В жировой ткани триглицериды составляют 60-85% ее массы.

Триглицерид — это сложный эфир, состоящий из глицерина, связанного с тремя жирными кислотами, которые могут быть насыщенными или ненасыщенными. В организме человека преобладают насыщенные пальмитиновая и олеиновая (омега-9) кислоты.

Триглицериды попадают с пищей или синтезируются в самом организме (печень, жировая ткань, слизистая тонкого кишечника, мышцы). Триглицериды, поступающие с пищей, гидролизуются в желудочно-кишечном тракте ферментом липазой. Скорость синтеза зависит от количества жирных кислот, полученных с пищей.

Триглицериды попадают в кровь в виде хиломикронов (липопротеин, несущий триглицериды). Произведенные жирные кислоты потребляются в тканях или повторно синтезируются из них, а триглицериды сохраняются.

Фосфолипиды

Состоят из двух групп соединений. Это глицерофосфолипиды (спирт-глицерин) и сфингомиелины (спиртовой сфингозин). Фосфолипиды имеют повышенную гидрофильную часть по сравнению с триглицеридами, состоящую из фосфатной группы и определенного аминоспирта, такого как холин. Из-за этой повышенной гидрофильной части фосфолипиды характеризуются полярностью и поэтому также называются полярными липидами.

Фосфолипиды являются основными липидами мембран. Их очень много в нервных клетках. Фосфолипиды образуют миелиновую оболочку нервных волокон и активно участвуют в энергетическом обмене.

Жирные кислоты

  • Насыщенные жирные кислоты. Они имеют высокую температуру плавления и поэтому сохраняют твердую консистенцию при комнатной температуре. Насыщенные жирные кислоты получают из животных источников. В растительных маслах (жирах) преобладают ненасыщенные жирные кислоты, за исключением кокосового и пальмового масел. Некоторые промышленные маргарины и спреды содержат много насыщенных жирных кислот.
  • Мононенасыщенные жирные кислоты. Эти жирные кислоты находятся в жидкой форме при комнатной температуре. Оливковое и рапсовое масла — лучший источник мононенасыщенных жирных кислот.
  • Полиненасыщенные жирные кислоты (PNRR). PNRR находятся в жидкой форме при комнатной температуре. Они легко окисляются в пище и в организме. PNRR участвуют в процессе метаболизма холестерина и входят в состав фосфолипидов клеточных мембран. Кроме того, они являются предшественниками таких активных биологических веществ, как простагландины, интерлейкины, тромбоксаны, играющих решающую роль в формировании иммунного ответа, регулировании свертывания крови и уменьшении воспаления.

Полиненасыщенные RR делятся на:

  • Омега-3 (альфа-линоленовые) – содержатся в льняном, тыквенном, грецком, рапсовом и соевом маслах и зеленых листовых овощах;
  • Эйкозапантан, докозагексаен — содержатся в масле морских рыб, масле морских водорослей.

Линоленовые жиры, арахидон — их производные. Они присутствуют в молочном жире, особенно летом, потому что в организме животных они состоят из линолевой кислоты, полученной с кормом.

Более длинные цепи RR: арахидон (AA), докозагексаеновая кислота (DHR), эйкозапентаеновая кислота (EPR) не считаются незаменимыми, но при отсутствии RR омега-3 и омега-6 в пище их выработка в организме может достигать критических уровней. Прямое поступление АК, ЭПК и ДГК с пищей позволяет избежать метаболизма линолевой и альфа линоленовой кислоты.

Читайте также:  Определите какому столбцу таблицы истинности функции f xvy

DHR и EPR очень важны для неврологического развития плода и ребенка. Дефицит DHR связан с болезнью Альцгеймера, синдромом дефицита внимания, фенилкетонурией, муковисцидозом и другими заболеваниями. Растительный α-линоленовый RR омега-3 может быть преобразован ферментами в физиологически важные EPR и DHR или соединения класса гормоноподобных эйкозаноидов.

Жирные кислоты омега-3 активно участвуют в клеточном метаболизме, в регуляции холестерина в организме человека: они снижают количество холестерина липопротеидов низкой плотности (так называемый плохой холестерин) в организме, а также вероятность сердечных заболеваний. Они также очень важны для функционирования клеток мозга, нейронных синапсов, сетчатки глаза, а также для выработки половых гормонов.

Оптимальное соотношение жирных кислот омега-6 к омега-3 составляет 5:1. В современном рационе это соотношение превышает 15 раз и более. Неправильное соотношение Омега-3 и Омега-6 опасно для здоровья.

Трансизомерные кислоты

Трансизомерные кислоты в небольших количествах содержатся в натуральных жирах, в желудках коров и овец, баранине, говядине, молоке и сыре. Важнейшим источником транс-изомерных кислот являются гидрогенизированные спреды PNRR, маргарины.

В процессе нагревания растительного масла ненасыщенные кислоты становятся насыщенными, а жидкие жиры становятся твердыми. Гидратированные диетические жиры имеют ряд преимуществ. Они дешевле, портятся медленнее, чем животные жиры, более устойчивы к окислению и высоким температурам.

Транс-изомерные кислоты, образующиеся во время гидрогенизации, связаны с увеличением холестерина ЛПНП и снижением холестерина ЛПВП, что увеличивает риск сердечно-сосудистых заболеваний, ожирения, диабета, а высокие уровни которых могут быть канцерогенными.

Стерины

Производные стероидов — это стероидные спирты, состоящие из четырех конденсированных колец атомов углерода, которые отличаются друг от друга функциональными группами (например, тестостерон, холестерин). Содержится в растениях, мясе и вырабатывается в организме.

В организме человека могут содержаться свободные стерины или сложные эфиры (стериды), образованные с жирными кислотами. Существует множество стеринов и стероидов, включая желчные кислоты, половые гормоны и гормоны коры надпочечников, витамины группы D, сердечные гликозиды, растительные фитостерины и некоторые алкалоиды.

В растениях есть стерины (эргостерин, стигмастерин и т. д.), но эти стерины не очень хорошо усваиваются организмом и, как считается, блокируют всасывание холестерина.

Самый распространенный стерол — это воскоподобный холестерин, который содержится только в продуктах животного происхождения. Фитостерины содержатся в растительной пище.

Холестерин является предшественником желчных кислот, стероидных гормонов и витамина D и представляет собой пергидрофенантреновое производное циклопентана. Это циклический ненасыщенный одноатомный спирт, имеющий полярную гидроксигруппу. Из холестерина в организме синтезируются другие стероиды: гормоны надпочечников, кортикостероиды, половые гормоны, желчные кислоты. Он синтезируется во многих клетках организма, но наиболее интенсивно в эндоплазматическом ретикулуме и цитоплазме эпителиальных клеток печени и кишечника. Холестерин синтезируется из ацетил-КоА. Выводится из организма с желчью или в виде солей желчных кислот.

Пищевой холестерин слабо влияет на уровень холестерина в плазме крови, поскольку большая его часть имеет эндогенное происхождение. Однако уменьшение количества насыщенных жиров в пище также резко снижает уровень холестерина в крови.

Животные и растительные жиры в диете

Животные жиры содержат много насыщенных жирных кислот. Они повышают уровень холестерина в крови и, следовательно, способствуют развитию атеросклероза, сердечно-сосудистых заболеваний и рака. Чрезмерное потребление насыщенных жирных кислот может привести к раку легких, кишечника, прямой кишки, груди и простаты.

Единственное исключение составляет один вид животного жира — жир морской рыбы, такой как скумбрия, сельдь, лосось, треска. Рекомендуется есть их как можно чаще из-за наличия полиненасыщенных жирных кислот омега-3.

Пищевая ценность масла определяется соотношением содержащихся в нем жирных кислот и количества жирорастворимых витаминов. В растительных маслах ненасыщенные жирные кислоты, то есть олеиновая, линолевая и α-линоленовая кислоты, составляют значительную часть всех жирных кислот. Особенно важны группы PNRR омега-6 и омега-3.

  • Считается, что дефицит производных омега-6 RR может быть одним из факторов риска, связанных с развитием рака.
  • Омега-3 PNRR снижает агрегацию тромбоцитов, а также риск образования тромбов, влияет на электрическую активность сердечной мышцы, тормозит возникновение аритмий. Они снижают уровень триглицеридов в крови, а также частоту ишемической болезни сердца.

Соотношение RR омега-6 и омега-3 в пищевых продуктах, рекомендованных Всемирной организацией здравоохранения (ВОЗ), должно составлять от 1:1 до 5:1. В последние десятилетия стала очевидной искаженная тенденция в этой рекомендации: растет потребление масел с высоким содержанием омега-6 и слишком низким содержанием омега-3 RR. Например, подсолнечное масло.

Соотношение этих кислот в различных продуктах питания колеблется от 10:1 до 20:1. Превышение омега-6 снижает уровень холестерина ЛПВП и увеличивает холестерин ЛПНП. Арахидон, производимый из кислот омега-6 и его метаболиты вызывают сужение сосудов и агрегацию тромбоцитов.

Более насыщенных транс-изомерных кислот, образующихся при гидрогенизации растительных масел, то есть при их затвердевании, увеличивают риск дислипидемии, CD типа II, а также попадания канцерогенов в клетки.

Качество растительного масла определяется его химическим составом, способом экстракции, технологией рафинирования и сохраняемыми при нем естественными физиологически активными веществами. Рекомендуется употреблять не менее 2-3 столовых ложек ненагретого масла в день с различными блюдами или салатами.

Источник

Структура и физиологическое значение липидов и липопротеидов в плазме крови

Международные названия

Содержание

  • Дефиниция
  • Современная классификация системы липидов
  • Классы и подклассы липидов
  • Свободные жирные кислоты
  • Глицеролипиды
  • Глицерофосфолипиды
  • Сфинголипиды
  • Стеролы
  • Пренолы
  • Сахаролипиды
  • Поликетиды
  • Липопротеиды
  • Литература

Дефиниция

Липиды идентифицируются как биологические субстанции, включающие в себя молекулы с широким спектром химических свойств, такие как жирные кислоты, фосфолипиды, стеролы, сфинголипиды, терпены и т.п., для которых характерны преимущественно гидрофобные качества и способность растворяться в органических растворителях (Smith A., 2000; Christie W.W., 2003). Важнейшей биологической ролью липидов является их участие в образовании клеточных мембран, внутриклеточных структур и органелл, а также в энергетическом метаболизме и синтезе ряда биологически активных соединений, таких как простагландины, стероидные гормоны, жирорастворимые витамины и некоторые коферменты (убихинон).

Современная классификация системы липидов

К настоящему времени создана и унифицирована современная классификация системы липидов, основанная на уникальных особенностях их строения и молекулярной структуры, а также их гидрофильных или гидрофобных свойствах. В соответствии с номенклатурой IUPAC-IUB (International Union of Pure and Applied Chemistry — International Union of Biochemistry) Commission on Biochemical Nomenclature выделяют восемь классов липидов, включающих жирные кислоты, глицеролипиды, глицерофосфолипиды, сфинголипиды, стеролы, пренолы, сахаролипиды и поликетиды (IUPAC-IUB Commission on Biochemical Nomenclature, 1977–2000). Химическая структура каждого из классов липидов представлена на рис. 1.1.

Рис. 1.1. Химическая структура основных классов липидов в соответствии с номенклатурой IUPAC-IUB Commission on Biochemical Nomenclature

Классы и подклассы липидов

Свободные жирные кислоты

Свободные жирные кислоты (СЖК) относятся к наиболее распространенным в организме человека классам липидов. Они имеют длинную неразветвленную цепь, состоящую из атомов углерода, и завершающуюся карбоксильным остатком (Caffrey M., Hogan J., 1992). Эти соединения обладают гидрофобными качествами благодаря наличию в составе молекулы СЖК повторяющейся серии из метиленовых групп. В зависимости от наличия или отсутствия в структуре СЖК двойных связей различают насыщенные (пальмитиновая, стеариновая и др.) и ненасыщенные (олеиновая, линолевая, линоленовая, арахидоновая) жирные кислоты соответственно (Small D.M., 1986).

Читайте также:  Электронные динамические таблицы конспект урока

Кроме того, существуют и другие классы СЖК: СЖК с прямой цепью (гексадеканоиды), метилсодержащие октадеканоиды, гидроксижирные кислоты, оксожирные кислоты (оксо-деканоиды), эпоксижирные кислоты (окстадеканоиды), метоксижирные кислоты, липокси-жирные кислоты (пентакоиды), гидропероксижирные кислоты, карбоциклические и гетероциклические производные, аминосодержащие жирные кислоты, нитрожирные кислоты (нитроокстадеканоиды), галогенированные и декарбоксилированные производные (Vance D.E., Vance J.E., 2002).

Ненасыщенные жирные кислоты, содержащие в структуре молекулы от 2 до 4 двойных связей, относят к незаменимым соединениям, поскольку в организме человека они не синтезируются и должны поступать с пищей, преимущественно с растительными маслами (Small D.M., 1986). Наиболее распространенные полиненасыщенные жирные кислоты (ПНЖК) — линолевая, линоленовая и арахидоновая, имеющие, соответственно, 2, 3 и 4 двойные связи. Биологическая роль полиненасыщенных жирных кислот в организме заключается в регуляции амфифильного состояния липидов клеточных мембран и в предотвращении депонирования холестерина (ХС) и других липидов в субинтиме стенки артерий. Кроме того, ПНЖК являются предшественниками простагландинов, лейкотриенов и других дериватов, а их w-3 производные принимают участие в метаболизме зрительных пигментов (Bazan N.G., 1989). СЖК с прямой цепью (гексадеканоиды) содержат терминальный карбоксильный остаток и часто являются конечным продуктом деградации поликетидов. Метилсодержащие октадеканоиды, а также циклические и гетероциклические СЖК широко представлены в природе (Ohlrogge J.B., 1997). Подклассы серосодержащих СЖК входят в состав биотина. Тиолы и их дериваты участвуют в синтезе и метаболизме полиненасыщенных жирных кислот. Многие подклассы СЖК, такие как гидроксижирные, оксожирные кислоты, а также окстадеканоиды являются прекурсорами критических этапов биологического синтеза ряда важнейших соединений, растительных эстрогенов, простагландинов и лейкотриенов (Murphy R.C., Smith W.L., 2002; Agrawal G.K. et al., 2004). Кроме того, многие эстерифицированные СЖК, такие как моно- и диэстерифицированные производные, а также лактоны, играют важную роль в обмене медиаторов, коэнзимов и карнитина. Липокси- и метоксижирные кислоты (пентакоиды), а также аминосодержащие СЖК занимают важное место в стабилизации клеточных мембран в организме человека и формировании устойчивости бактериальной стенки к антибиотикам (Roche D.M. et al., 2004). Химическая структура различных подклассов СЖК представлена на рис. 1.2.

Рис. 1.2. Химическая структура различных подклассов СЖК

Глицеролипиды

Несмотря на то что в структуре глицеролипидов и глицерофосфолипидов содержатся остатки молекулы глицерина, последние выделены в отдельную группу, поскольку часто выступают в роли биологических регуляторов синтеза триглицеридов (ТГ) в различных органах и тканях, а также в качестве сигнальных молекул. Среди глицеролипидов доминируют моно-, ди- и тризамещенные глицеролы, хорошо известные как ацилглицерины (так называемые нейтральные жиры) (Stam H. et al., 1987; Coleman R.A., Lee D.P., 2004). Другие подклассы представлены глицерогликанами, которые содержат один или несколько остатков гликолизированного глицерина (Pahlsson P. et al., 1998). Химическая структуры глицеролипидов представлена на рис. 1.3.

Рис. 1.3. Химическая структура глицеролипидов

Глицерофосфолипиды

Глицерофосфолипиды образуются в результате связывания одной из гидроксильных групп глицерина с фосфатной группой, а двух других — с СЖК (Ivanova P.T. et al., 2004). Этот класс липидов является ключевым компонентом желчных кислот, предшественником кардиолипина, внутриклеточных мессенджеров, сигнальных молекул, факторов свертывания крови, а также входит в состав биологических мембран и цитоскелета (Kennedy E.P., 1962; Cevc G., 1993; Forrester J.S. et al., 2004; Ivanova P.T. et al., 2004; Pereto J. et al., 2004). Большая часть глицерофосфолипидов представлена фосфатидилхолинами (лецитином) и фосфатидилэтаноламинами. Химическая структура глицерофосфолипидов представлена на рис. 1.4.

Рис. 1.4. Химическая структура глицерофосфолипидов

Сфинголипиды

Сфинголипиды — одно из наиболее широко представленных в природе семейств липидов, синтезирующихся de novo из серина и длинноцепочечного ацил-коэнзима А (ацил-КoA), а затем конвертирующегося в различные дериваты, такие как керамиды, фосфосфинголипиды, гликосфинголипиды и другие продукты (Taniguchi N. et al., 2002). Сфинголипиды входят в состав миелиновых оболочек и биологических мембран различных клеток, особенно эпидермальных. Химическая структура сфинголипидов представлена на рис. 1.5.

Рис. 1.5. Химическая структура сфинголипидов

Стеролы

Стеролы представляют собой производные восстановленных конденсированных циклических систем — циклопентанпергидрофенантренов. К числу производных C21-стеролов относятся прогестерон, кортикостерон, минералкортикоиды, к дериватам C18-стеролов — кортизол, тестостерон, андростерон, эстрогены, а также многие сигнальные молекулы. Кроме того, производными стеролов являются желчные кислоты, ХС, витамин D, таурин, глицин, глюкуроновая кислота и др. (Jones G. et al., 1998; Taniguchi N. et al., 2008). Стеролы входят в состав биологических мембран и цитоскелета вместе с глицеролипидами, лизофосфатидами, сфингомиелином (Merrill A.H. Jr., Sandhoff K., 2002; Bach D., Wachtel E., 2003; Russell D.W., 2003). Химическая структура стеролов представлена на рис. 1.6.

Рис. 1.6. Химическая структура стеролов

Пренолы

Пренолы синтезируются из пяти углеродных предшественников изопентилдифосфата и диметилалилдифосфата, которые являются промежуточными продуктами метаболизма мевалоната (Kuzuyama T., Seto H., 2003). Необходимо отметить, что дериватами пренолов являются многие жирорастворимые витамины, такие как витамин А, Е и К, а также природные антиоксиданты и коэнзимы (убихинон) (Porter J.W., Spurgeon S.L., 1981; Meganathan R., 2001; Ricciarelli R. et al., 2001; Demming-Adams B., Adams W.W., 2002). Полипренолы (долихолы) играют важную роль в обеспечении транспорта олигосахаридов через биологические мембраны, модулировании гликации белков и липидов, а также синтезе полисахаридов (Lazar K., Walker S., 2002; Raetz C.R.H., Whitfield C., 2002). Химическая структура пренолов представлена на рис. 1.7.

Рис. 1.7. Химическая структура пренолов

Сахаролипиды

В соответствии с современной номенклатурой термин «гликолипиды» заменен на «сахаролипиды», поскольку все восемь основных классов липидов имеют гликолипидные и фосфогликолипидные дериваты. Сахаролипиды входят в состав биологических мембран, а также являются компонентом бактериальной стенки грамотрицательных бактерий, обладающей чрезвычайно высокой иммунно- и анафилактогенностью (Spaink H.P., 2000; Lazar K., Walker S., 2002; Raetz C.R.H., Whitfield C., 2002). Химическая структура сахаролипидов представлена на рис. 1.8.

Рис. 1.8. Химическая структура сахаролипидов

Поликетиды

Поликетиды представлены ароматическими, макролидными и гибридными производными, основной биологической ролью которых является непосредственное участие в синтезе липидов различных классов (Walsh C.T., 2004). Структура поликетидов подвергается модификации в ходе реакций гликолизации, окисления, гидроксилирования и метилирования и некоторых других (Khosla C. et al., 1999). Сами поликетиды часто вовлекаются в процессы рибосомального протеинсинтеза. Кроме того, большинство эпитопов различных антибиотиков и антифунгицидов являются поликетидами или их дериватами. С другой стороны, многие поликетиды являются потенциальными токсинами (Moore B.S., Hartweck C., 2002; Reeves C.D., 2003). Химическая структура поликетидов представлена на рис. 1.9.

Рис. 1.9. Химическая структура поликетидов

Липопротеиды

Липопротеиды являются транспортными формами липидов, имеют глобулярную структуру в виде радиально расположенных вокруг молекул ТГ и ХС полярных молекул фосфолипидов, направленных гидрофильным полюсом центрально. Они состоят из апопротеина и липидного компонента. Основные свойства липопротеидов определяются преимущественно протеиновыми компонентами, тогда как их липидная часть обладает значительно меньшей специфичностью. Большинство клеточных рецепторов способны распознавать именно молекулу апопротеина, благодаря которой осуществляются кооперация, поглощение, деградация и клиренс липопротеида, а также обмен ХС и ТГ между липопротеидами различных классов.

Основные классы липопротеидов отличаются по своим физико-химическим свойствам: размеру частиц, их плотности и соотношению входящих в их состав апопротеина, ТГ, ХС и фосфолипидов (табл. 1.1).

Читайте также:  Специальные средства полиции таблица

В физиологических условиях у человека ХС и ТГ распределены в различных липопротеидах в определенных взаимоотношениях (рис. 1.10). Причем последние не являются «жесткими» и могут существенно модифицироваться при различных состояниях, таких как голодание, прием пищи, обогащенной экзогенными жирами, вегетарианском питании, после физических нагрузок высокой интенсивности и т.п.

Рис. 1.10. Удельное распределение ХС и ТГ в липопротеидах у здоровых лиц натощак ХМ — хиломикроны.

Основные апопротеины, входящие в состав липопротеидов, указаны в табл. 1.2. Так, хиломикроны и липопротеиды очень низкой плотности (ЛПОНП) состоят главным образом из ТГ и содержат апо-В48-, апо-С- и апо-Е-протеины. Они отличаются очень низкой плотностью и достаточно крупными размерами частиц (от 30–80 нм до 100–150 нм). Липопротеиды низкой плотности (ЛПНП) относятся к апо-В100-содержащим липопротеидам, имеют менее крупные частицы (20 нм) и обогащены ХС. Удельное содержание в них апо-В100-протеина не превышает 25%. Наиболее мелкими частицами являются липопротеиды высокой плотности (ЛПВП), состоящие преимущественно из апо-А-I-, апо-А-II- и апо-С-липопротеина, а также фосфолипидов. Апо-В-содержащие липопротеиды являются основной транспортной формой эндогенного ХС, обеспечивая его транспорт в клетки периферических тканей, и обладают потенциально атерогенными качествами, тогда как ЛПВП участвуют в процессах обратного транспорта ХС в гепатоциты и проявляют антиатерогенные качества (рис. 1.11). Более подробно о процессах эндогенного синтеза ХС и взаимоотношениях различных вне- и внутриклеточных липидных транспортных систем изложено в главе 2.

Кроме ТГ, ХС и фосфолипидов в плазме крови присутствуют так называемые неэстерифицированные жирные кислоты (НЭЖК), адсорбированные на альбумине, и хиломикроны, хотя период их полужизни чрезвычайно ограничен. НЭЖК освобождаются из липоцитов и транспортируются к различным органам и тканям. Хиломикроны являются основной транспортной формой экзогенных ТГ.

Таблица 1.1 Физико-химические характеристики липопротеидов

Липо­проте­иды Плот­ность, г/мл Содер­жание липидов, %
ТГ ХС Фосфо­липиды
ХМ 0,95 80–95 2–7 3–9
ЛПОНП 0,95–1,006 55–80 5–15 10–20
ЛППП 1,006–1,019 20–50 20–40 15–25
ЛПНП 1,019–1,063 5–15 40–50 20–25
ЛПВП 1,063–1,21 5–10 15–25 20–30

В табл. 1 и 2: ХМ — хиломикроны, ЛПОНП — липопротеиды очень низкой плотности, ЛППП — липопротеиды промежуточной плотности, ЛПНП — липопротеиды низкой плотности, ЛПВП — липопротеиды высокой плотности.

Таблица 1.2 Основные апопротеины, входящие в состав липопротеидов

Липопротеиды Апопротеины
ХМ Апо-В48, апо-С, апо-Е
ЛПОНП Апо-В100, апо-С, апо-Е
ЛПНП Апо-В100
ЛППП Апо-В100, апо-Е
ЛПВП
Субфракция 2 Апо-А-I, апо-А-II, апо-С
Субфракция 3 Апо-А-II, апо-А-I, апо-С

Рис. 1.11. Потенциально про- и антиатерогенные липопротеиды

Таким образом, биологическая роль липидов в организме человека многообразна и не сводится только к выполнению пластической функции и участию в энергетическом метаболизме. Многие коферменты, энзимы, сигнальные молекулы и рецепторные субъединицы либо сами являются дериватами липидов, либо инкорпорируют последние в свою структуру. Если клинические значения для многих компонентов системы экзогенного и эндогенного путей метаболизма липидов уже установлены (общий ХС, хиломикроны, фракции липопротеидов, ТГ, НЭЖК, мицеллы, содержащие СЖК, субклассы СЖК, апопротеины, липопротеиды (a) — ЛП (a), фосфолипиды), то для регуляторных субъединиц, сигнальных молекул и многих других соединений такую роль еще придется документировать.

Источник

Липопротеины

Структура липопротеина

Липопротеины или липопротеиды (англ. lipoprotein) — сложные белки, состоящий из аполипопротеинов и липидов. Из липидов в состав липопротеинов могут входить: свободные жирные кислоты, фосфолипиды, холестерины, нейтральные жиры и другие. Аполипопротеины (синонимы: апобелки и апо) — белки, компоненты липопротеинов, специфически связывающиеся с соответствующими липидами при формировании липопротеина.

На иллюстрации: структура липопротеина. Автор оригинального рисунка AntiSense, лицензия GNU Free Documentation License. Адаптировано.

Типы липопротеинов

Существуют разные классификации липопротеинов, ориентированные на различные их характеристики. Липопротеины разделяют на растворимые в воде (плазме крови, молоке и т.п.) и структурные, входящие в состав мембран клеток, миелиновой оболочки нервных волокон, структурных тканей растений.

Наиболее известной и распространённая является классификация липопротеинов плазмы крови по плотности. Выделяют:

  • Хиломикроны
  • Липопротеины очень низкой плотности (ЛПОНП или ЛОНП)
  • Липопротеины низкой плотности (ЛПНП или ЛНП)
  • Липопротеины промежуточной (средней) плотности (ЛППП, ЛПП, ЛСП или ЛПСП)
  • Липопротеины высокой плотности (ЛПВП или ЛВП)

Плотность липопротеинов тем ниже, чем выше содержание в них липидов.

Средние значения характеристик разных классов липопротеинов (в популяции у молодых здоровых людей с весом около 70 кг):

Тип Плотность,
г/мл
Диаметр, нм % протеина % холестерина % фосфолипидов % триглицеридов
и эфиров холестерина
ЛПВП >1,063 5–15 33 30 29 4
ЛПНП 1,019–1,063 18–28 25 50 21 8
ЛППП 1,006–1,019 25–50 18 29 22 31
ЛПОНП 0,95–1,006 30–80 10 22 18 50
Хиломикроны Важнейшими препаратами для снижения «плохих»
липопопротеинов в крови являются препараты
из группы статинов

ЛПВП легко проникают в стенку артерий и легко её покидают, не влияя, таким образом, на развитие атеросклероза. ЛПНП, ЛСП и часть ЛПОНП после окисления задерживаются в стенках артерий. Самые крупные — хиломикроны и большие по размеру ЛПОНП не способны из-за своего размера проникнуть в стенку артерий и также не влияют на развитие атеросклероза.

Для уменьшения «плохих» липопротеинов может быть рекомендована диета (см. ниже) и терапия препаратами из группы статинов (аторвастатин, церивастатин, розувастатин, питавастатин и др.).

Основная диета для снижения липидов (холестерина)
Принципы Источники
Уменьшение общего потребления жира и насыщенных жиров Сливочное масло, твёрдый маргарин, цельное молоко, твёрдые и мягкие сыры, видимый жир мяса, утка, гусь, обычная колбаса, пирожные, сливки, кокосовое и пальмовое масло
Увеличение потребления высокобелковых продуктов с низким содержанием насыщенных жиров Рыба, курица, индейка, дичь, телятина
Увеличение сложных углеводов и фруктовых, овощных и злаковых волокон, особенно клетчатки Все свежезамороженные овощи, свежие фрукты, все неполированные зерновые, чечевица, сушёные бобы, рис
Увеличение потребления полиненасыщенных и мононенасыщенных жиров Подсолнечное, кукурузное, оливковое масло, масло из соевых бобов и другие продукты из них, если они не в твёрдом виде (не гидрогенизированы)
Уменьшение холестерина в питании Мозги, почки, язык, яйца (не более 1-2 желтков в неделю), печень (не более 2 раз в месяц)
Уменьшение потребления натрия Соль, глютамат натрия, консервированные овощи и мясо, солёные продукты (ветчина, бекон, копчёная рыба), минеральная вода с большим количеством соли

Источник: Еганян Р.А. Диета и статины в профилактике ишемической болезни сердца (литературный обзор) // РМЖ. 2014. №2. С. 112.

Нарушения обмена липопротеинов в МКБ-10
Медицинские услуги, связанные с определением уровня липопротеинов в крови человека

Приказом Минздравсоцразвития России № 1664н от 27.12.2011 г. утверждена Номенклатура медицинских услуг. В Разделе 9 Номенклатуры предусмотрен ряд медицинских услуг, связанных с определением уровня липопротеинов в крови человека:

Код услуги Наименование медицинской услуги
A09.05.004 Исследование уровня альфа-липопротеинов (высокой плотности) в крови
A09.05.027 Исследование уровня липопротеинов в крови
A09.05.028 Исследование уровня липопротеинов низкой плотности

На сайте GastroScan.ru в разделе «Литература» имеются подразделы «Расстройства питания и нарушение обмена веществ, ожирение, метаболический синдром» и «Сердечно-сосудистые заболевания, ассоциированные с заболеваниями ЖКТ», содержащий статьи для профессионалов здравоохранения, затрагивающие данные вопросы.

Результаты исследований уровня липопротеинов в крови дают важную информацию для лечащего врача, но они ни в коей мере не являются диагнозом!

Источник

Adblock
detector