Меню

Концепции эволюции вселенной таблица



Строение и эволюция Вселенной

  • Галактики
  1. Эволюция Вселенной
  2. Строение Вселенной
  3. Размеры Вселенной
  4. Будущее Вселенной
  5. Интересные факты о Вселенной

Вселенная — это необъятные просторы, в которых находиться черная материя, триллионы галактик и звездных скоплений. У нее нет границ ни в пространстве, ни во времени. Огромные космические просторы таят в себе много тайн, для разгадки которых важно определить принципы эволюции и строение Вселенной.

Совокупность наблюдаемых галактик всех типов и их скоплений, а также межгалактической среды, образует Вселенную.

Эволюция Вселенной

Самым главным свойством Вселенной является её постоянное расширение. Впервые гипотезу о расширении Вселенной выдвинул Альберт Эйнштейн, однако строгих расчётов им предложено не было.

В 1920 году русский учёный Александр Александрович Фридман занялся анализом десяти сложнейших уравнений теории относительности и пришёл к фундаментальному выводу: ни при каких условиях их решение не может быть единственным. Это означало, что невозможно точно ответить на вопрос о том, какой формой обладает Вселенная, каков её радиус кривизны и вообще, стационарна она или нет.

Но тем не менее Фридманом было получено три возможные модели нестационарной Вселенной: две из них описывали монотонно расширяющуюся Вселенную. А третья модель предполагала периодичность Вселенной, то есть радиус кривизны её пространства сначала возрастает от нуля до некоторого значения, а затем вновь уменьшается до нуля.

Всё это говорило о том, что Вселенная не может находится в стационарном состоянии, она должна расширяться и сжиматься под действием гравитационных сил.

Но почему же Вселенная расширяется?

Ответ на этот вопрос впервые предложили бельгийский священник Жорж Леметр и советско-американский физик Георгий Антонович Гамов. Итак, согласно их теории, Вселенная возникла около 14 миллиардов лет назад в результате Большого взрыва и с тех пор непрерывно расширяется, и охлаждается.

До взрыва не было ничего: ни материи, ни пространства, ни времени. Четыре фундаментальных взаимодействия объединены в одно. А сама Вселенная представляла собой некую субстанцию с бесконечно малым объёмом и бесконечно большой плотностью.

Такое состояние материи принято называть сингулярностью.

Этапы формирования Вселенной

Теория Большого взрыва позволила ученым создать точную модель эволюции Мироздания. И сегодня мы неплохо знаем, какие процессы происходили в молодой Вселенной. Исключение составляет лишь самый ранний этап творения, который по-прежнему остается предметом яростных обсуждений и споров.

В настоящее время наукой выделяются следующие этапы после Большого взрыва:

  1. Самый ранний из известных нам периодов называется Планковской эрой, он занимает отрезок от 0 до 10-43 секунд. В это время вся материя и энергия Вселенной была собрана в одной точке, а четыре основных взаимодействия были едины;
  2. Эпоха Великого объединения (с 10−43 по 10−36 секунд). Она характеризуется появлением кварков и разделением основных видов взаимодействий. Главным событием этого периода считается выделение гравитационной силы. В эту эру начали формироваться законы Вселенной. Сегодня мы имеем возможность для подробного описания физических процессов этой эпохи;
  3. Третий этап творения называется Эпохой инфляции (с 10−36 по 10−32). В это время началось стремительное движение Вселенной со скоростью, значительно превосходящей световую. Она становится больше, чем современная видимая Вселенная. Начинается охлаждение. В данный период окончательно разделяются фундаментальные силы мироздания;
  4. В период с 10−32по 10−12 секунды появляются «экзотические» частицы типа бозона Хиггса, пространство заполнила кварк-глюонная плазма. Промежуток с 10−12 по 10−6 секунды называется эпохой кварков, с 10−6 по1 секундуадронов, в 1 секунду после Большого взрыва начинается эра лептонов;
  5. Фаза нуклеосинтеза. Она длилась примерно до третьей минуты от начала событий. В этот период во Вселенной из частиц возникают атомы гелия, дейтерия, водорода. Продолжается охлаждение, пространство становится прозрачным для фотонов;
  6. Через три минуты после Большого взрыва начинается эра Первичной рекомбинации. В этот период появилось реликтовое излучение, которое астрономы изучают до сих пор;
  7. Период 380 тыс. – 550 млн лет называют Темными веками. Вселенная в это время заполнена водородом, гелием, различными видами излучения. Источников света во Вселенной не было;
  8. Через 550 млн лет после Сотворения появляются звезды, галактики и прочие чудеса Вселенной. Первые звезды взрываются, освобождая материю для образования планетных систем. Данный период называется Эрой реионизации;
  9. В возрасте 800 млн лет во Вселенной начинают образовываться первые звездные системы с планетами. Наступает Эра вещества. Вселенная стала похожа на то, что мы видим сейчас. В этот период формируется и наша родная планета.

Недостатки теории Большого взрыва

Некоторые ученые отмечают в теории Большого взрыва слабые места. Если бы мироздание образовалось мгновенно из одной небольшой точки, то должно было существовать неоднородное распределение вещества, чего мы не наблюдаем. Также данная модель не может объяснить, куда подевалась антиматерия, количество которой в «момент творения» не должно было уступать обычной барионной материи. Однако сейчас число античастиц во Вселенной мизерно. Но самый весомый недостаток данной теории – ее неспособность объяснить феномен Большого взрыва, он просто воспринимается как свершившийся факт. Мы не знаем, как выглядела Вселенная до момента сингулярности.

Предпринимались попытки улучшить существующую теорию Большого взрыва. Например, существует гипотеза о цикличности Вселенной, согласно которой, рождение из сингулярности – не более чем ее переход из одного состояния в другое. Правда, такой подход противоречит второму закону термодинамики.

Существуют и другие гипотезы зарождения и дальнейшей эволюции мироздания. Долгие годы была популярна модель стационарной Вселенной. Ряд ученых придерживались мнения, что в результате квантовых флуктуаций она возникла из вакуума. В их числе был и знаменитый Стивен Хокинг.

Ли Смолин выдвинул теорию о том, что наша, как и другие Вселенные, образовались внутри черных дыр.

Строение Вселенной

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Пути могут рождаться и умирать, Галактика все равно остается все той же, как неизменным остается лес, в котором поколение за поколением сменяются деревья.

Настоящий переворот в науке о Вселенной произвели в 1922 — 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир — это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Общие представления о строении Вселенной складывались на протяжении всей истории астрономии. Однако только в нашем веке смогла появиться современная наука о строении и эволюции Вселенной — космология.

Структура Вселенной довольно сложна и имеет несколько уровней организации, которые мы можем классифицировать в соответствии с масштабом объектов:

  • Астрономические тела во Вселенной обычно группируются в системы. Звезды нередко образуют пары или входят в состав скоплений, которые содержат десятки, а то и сотни светил. В этом отношении наше Солнце довольно нетипично, так как оно не имеет «двойника»;
  • Следующей ступенью организации являются галактики. Они могут быть спиральными, эллиптическими, линзовидными, неправильными. Ученые пока не до конца понимают, почему галактики обладают разной формой. На этом уровне мы обнаруживаем такие чудеса Вселенной, как черные дыры, темную материю, межзвездный газ, двойные звезды. Кроме звезд, в их состав входит пыль, газ, электромагнитное излучение. В известной Вселенной обнаружено несколько сотен миллиардов галактик.
  • Несколько галактик образуют Местную группу. В нашу, кроме Млечного пути, входит Туманность Треугольника, Туманность Андромеды и еще 31 система. Скопления галактик – самые крупные из известных устойчивых структур Вселенной, их удерживает воедино гравитационная сила и еще какой-то фактор. Ученые подсчитали, что одного лишь притяжения явно недостаточно для поддержания стабильности этих объектов. Научного обоснования данного феномена пока не существует;
  • Следующим уровнем структуры Вселенной являются сверхскопления галактик, каждая из которых содержит десятки, а то и сотни галактик и скоплений. Однако тяготение их уже не удерживает, поэтому они следуют за расширяющейся Вселенной;
  • Последним уровнем организации мироздания являются ячейки или пузыри, стенки которых формируют сверхскопления галактик. Между ними находятся пустотные области, именуемые войдами. Эти структуры Вселенной имеют масштабы около 100 Мпк. На этом ярусе наиболее заметны процессы расширения Вселенной, также с ним связано реликтовое излучение – отголосок Большого взрыва.

Каждый из вселенских объектов — это уникальное формирование с таинственной структурой.

Сегодня мы гораздо лучше понимаем устройство Вселенной, но каждое полученное знание лишь рождает новые вопросы. Исследование атомных частиц в коллайдере, наблюдение за жизнью в дикой природе, высадку межпланетного зонда на астероиде также можно назвать изучением Вселенной, ибо данные объекты входят в ее состав. Человек тоже часть нашей прекрасной звездной Вселенной. Изучая Солнечную систему или далекие галактики, мы больше узнаем о самих себе.

Читайте также:  Таблица международного олимпийского движения

Размеры Вселенной

Говоря о размерах Вселенной, мы имеем ввиду ее видимую часть, называемую еще Метагалактикой. Чем больше результатов наблюдений мы получаем, тем дальше раздвигаются границы Вселенной. Причем происходит это одновременно по всем направлениям, что доказывает ее сферическую форму.

Космическая карта Вселенной

Наш мир появился около 13,8 млрд лет назад в результате Большого взрыва – события, породившего звезды, планеты, галактики и другие объекты. Эта цифра является реальным возрастом Вселенной.

Исходя из скорости света можно предположить, что ее размеры также составляют 13,8 млрд световых лет. Однако на самом деле они больше, ибо с момента рождения Вселенная непрерывно расширяется. Часть движется со сверхсветовой скоростью, из-за чего значительное количество объектов во Вселенной останутся невидимыми навеки. Данный предел называются сферой или горизонтом Хаббла.

Диаметр Метагалактики составляет 93 млрд световых лет. Мы не знаем, что находится за пределами известной Вселенной. Может быть, существуют и более далекие объекты, недоступные сегодня для астрономических наблюдений. Значительная часть ученых верит в бесконечность Вселенной.

Возраст Вселенной неоднократно проверялся с использованием различных методик и научных инструментов. Последний раз его подтвердили с помощью орбитального телескопа «Планк». Имеющиеся данные полностью соответствуют современным моделям расширения Вселенной.

Будущее Вселенной

Наше мироздание началось с маленькой точки. Быстрое развитие и расширение границ привело к образованию необъятных космических просторов. Но, будет ли остановлено расширение? Возможен ли обратный вариант развития, то есть сжатия в ту же исходную плотную точку?

Модели будущего Вселенной

В 1990-х годах, специалисты пришли к выводу, что реальны два варианта будущего Вселенной.

“Сжатие” космических просторов возможно! При достижении максимальных размеров, она может разрушиться. Плотность черной материи может достичь критических показателей, из-за чего будет сжиматься.

Также, существует предположение, что причиной разрушения мироздания могут стать черные дыры. Все звездные скопления могут прекратить передачу энергии и преобразоваться в черные дыры. Если температура космического пространства приблизиться к нулю, возможно их испарение. В результате чего, все разрушиться и наступит логичный конец.

Интересные факты о Вселенной

10.От минус 270 градусов по Цельсию До 50 миллионов градусов по Цельсию.

В космосе буквально везде встречаются довольно экстремальные условия. Температура сверхновой может достигать более 50 миллионов градусов по Цельсию, т. е. в пять раз выше температуры ядерного взрыва. С другой же стороны, в открытом космосе температура составляет минус 270 градусов по Цельсию.

9.Наши тела состоят из звезд

Ваше и любое другое тело во Вселенной состоит из звезд, точнее, мертвых звезд. В самом начале существовали только простые элементы, такие как водород и гелий. Потом эти элементы соединились и сформировали первые звезды, которые в свою очередь образовали новые элементы, такие как железо и золото. Через какое-то время первые звезды погибли, и их взрывы сформировали новые элементы. Наши тела состоят из практически всех элементов, которые есть во Вселенной – конечно, большую часть составляют элементы вроде водорода и кислорода, но в нас также содержатся небольшие порции таких элементов, как золото!

8. Когда вы смотрите на небо, вы смотрите в прошлое

Звезды, которые вы видите – вовсе не звезды, а свет, который они излучали много лет назад. Из-за того, что свету требуется определенное время, чтобы достичь нас, мы видим его таким, каким он был какое-то время назад. Один световой год – это расстояние, которое свет преодолевает за год. Так что, если вы смотрите на звезду, которая находится на расстоянии 1000 световых лет, вы видите ее такой, какой она выглядела 1000 лет назад.

7.Парадокс Ферми.Инопланетная жизнь.

Ученые настолько заинтересованы инопланетной жизнью, что придумали десятки различных интересных техник, направленных на ее поиск. Например, проект SETI (Search for Extraterrestrial Intelligence), чтобы ускорить обнаружение инопланетян, использует свои методы для поиска космического мусора, ближайших звезд, искусственных объектов, радиоволн и радиации.

Вселенная настолько огромная и старая, что есть очень большие шансы на обнаружение других планет, похожих на Землю. Однако, согласно парадоксу Ферми, высокая вероятность внеземной жизни в космосе противоречит отсутствию видимых доказательств, подтверждающих это. На данный момент люди даже не уверены, что страшней: тот факт, что они не одиноки во Вселенной или то, что рядом есть кто-то еще.

6. Во Вселенной как минимум 10 миллиардов триллионов звезд

Хотя ученые не могут прийти к единому согласию в этом вопросе, самой достоверной цифрой в нашем распоряжении является 10 миллиардов триллионов. Каждая звезда отличается по размеру и может быть в сотни раз меньше или больше нашего Солнца. Вдобавок, каждую звезду окружают звездные тела, вроде планет, которых может быть от 4 до 12.

5. Вселенных может быть больше

Да, наша Вселенная может быть лишь одной из многих других, отличных от нашей. Малейшие изменения в принципах науки могут превратить другие Вселенные в нечто, о чем мы даже не мечтали. Все зависит от того факта, может ли большой взрыв, который положил начало нашей Вселенной, произойти в других местах. Если так, то существование бесчисленного количества других миров действительно возможно.

4. Черные дыры тоже умирают

Черные дыры – тела различных размеров, которые мы не можем видеть. Они обладают немыслимой силой притяжения, которую не способен преодолеть даже свет, и они питаются пойманным светом, чтобы выжить.

Однако Стивен Хокинг утверждает, что если черные дыры «голодают» слишком долго, через какое-то время они могут умереть.

3. Вселенная растет

До 1920-х люди считали, что Вселенная стоит на месте, но астроном Эдвин Хаббл обнаружил, что она расширяется. Многие годы люди ошибались, исходя из предположения, что гравитация замедляет Вселенную, но такой факт был бы верен только в том случае, если бы гравитация была сильнее. Более того, в 1998 году телескоп «Хаббл» зафиксировал, что сверхновые звезды в прошлом расширялись медленнее, чем сейчас, что только подтверждает теорию Хаббла.

2. Вселенная полна невидимых вещей

Существует мнение, что мы видим и знаем только 4% Вселенной, так как 96% может состоять из темной материи и темной энергии, которые мы все еще не можем обнаружить. Эти неизвестные сущности предположительно расталкивают видимую материю, что приводит к расширению Вселенной и другим возможным эффектам, которые пока нам неизвестны.

1. Наши предки знали о Вселенной больше, чем мы знаем сейчас

Наши предки были куда умнее, чем думают многие. Хотя они не строили небоскребы и не создавали компьютеры, они много знали о растениях и травах, географии и астрономии. Не будем забывать о Стоунхендже, пирамидах Гизы, линиях Наски и сотнях других известных мест, которые наши предки предположительно использовали для наблюдения за небом. Они полагали, что изменения в небе играли большую роль в их жизни, поэтому делали точные космологические расчеты. Полученная информация помогала им определять, когда лучше всего было выращивать еду, путешествовать в опасные земли, заключать союзы и принимать важные решения.

Видео

Источник

Концепции, объясняющие эволюцию Вселенной

— концепция самоорганизации;

— концепция креационизма;

Для концепции самоорганизации материальная Вселенная является единственной реальностью, и никакой другой реальности помимо нее не существует. Эволюция Вселенной описывается в терминах самоорганизации: идет самопроизвольное упорядочение систем в направлении становления все более сложных структур. Динамический хаос порождает порядок. Вопрос о цели космической эволюции в рамках концепции самоорганизации ставиться не может.

В рамках концепции креационизма, т.е. творения, эволюция Вселенной связываетсяс реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существование во Вселенной направленного развития – от простых систем ко все более сложным и информационно емким, в ходе которого создаются условия для возникновения жизни и человека.

В качестве дополнительного аргумента привлекается антропный принцип, суть которого заключается в том, что существование той Вселенной, в которой мы живем, зависит от численных значений фундаментальных физических констант – постоянных Планка, гравитации, констант взаимодействия и т.д.

Численные значения этих величин определяют основные особенности Вселенной, размеры атомов, атомных ядер, планет, звезд, плотность вещества и время ее жизни. Если бы эти значения отличались от существующих хотя бы на ничтожно малую величину, то не только жизнь была бы невозможной, но и сама Вселенная как сложная упорядоченная структура, не могла бы существовать.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научной картины мира, синтезирующей все достижения в области знания и веры.

Читайте также:  Таблица формы количества товара

Контрольные вопросы:

1. 1.Какова эволюция представлений о космологической модели Вселенной?

2. В чем заключаются 2 парадокса, связанные с постулатом о бесконечности Вселенной?

3. Каковы особенности развития современной космологии?

4. В чем заключается космологическая модель А.А. Фридмана?

5. Что такое космологическая сингулярность?

6. Что установил Э.Хаббл?

7. В чем заключается модель «горячей» Вселенной?

8. Что означает нестационарность, изотропность и однородность Вселенной?

9. Какова стандартная модель эволюции Вселенной?

10. Опишите эволюцию Вселенной как цепочку нарушений симметрии.

11. В чем заключается дилемма «взрывы или коллапсы»?

12. Каков возраст Вселенной?

13. Что такое реликтовое излучение?

14. Опишите модель эволюции Вселенной по К. Сагану.

15. Какие существуют концепции, объясняющие эволюцию Вселенной?

Глава 4

СОЛНЕЧНАЯ СИСТЕМА

Солнечной системой называется совокупность звезды Солнца и космических объектов, находящихся в поле ее притяжения.

Солнечная система является упорядоченной системой, имеющей свои закономерности строения.

Все объекты Солнечной системы официально делят на три категории: планеты, карликовые планеты и малые тела Солнечной системы.

Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы: Меркурий, Венера, Земля, Марс и главный пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта: Юпитер, Сатурн, Уран, Нептун (рис. 26).

26 Планеты Солнечной системы

После открытия пояса Койпера наиболее удаленной частью Солнечной системы считают регион, состоящий из объектов, расположенных дальше Нептуна.

Единый характер Солнечной системы проявляется в том, что все планеты и их спутники вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости.

Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим орбитам. Исключение составляют Венера и Уран, причем Уран вращается практически «лежа на боку». Орбиты объектов вокруг Солнца описываются законами Кеплера. Согласно им, каждый объект обращается по эллипсу, в одном из фокусов которого находится Солнце. У более близких к Солнцу объектов большая угловая скорость вращения, поэтому короче период обращения (год). На эллиптической орбите расстояние объекта от Солнца изменяется в течение его года. Ближайшая к Солнцу точка орбиты объекта называется перигелий, наиболее удаленная – афелий. Каждый объект движется наиболее быстро в своем перигелии и наиболее медленно в афелии. Орбиты планет близки к кругу, но многие кометы, астероиды и объекты пояса Койпера имеют сильно вытянутые эллиптические орбиты. Пояс Койпера наиболее удаленная часть Солнечной системы, состоящая из объектов, расположенных дальше Нептуна.

Отмечается закономерность в строении Солнечной системы: каждая следующая планета удалена от Солнца примерно в 2 раза дальше, чем предыдущая. Принимая это во внимание, кажется невозможным случайное возникновение Солнечной системы.

Большинство планет Солнечной системы обладают собственными подчиненными системами. Многие окружены спутниками, некоторые из которых больше Меркурия. Большинство крупных спутников находятся в синхронном вращении с одной стороной, постоянно обращенной к планете. Четыре наибольшие планеты – газовые гиганты, также обладают кольцами, тонкими полосами крошечных частиц, обращающимися по очень близким орбитам практически в унисон.

Вероятность выхода космических объектов за ее пределы крайне мала, поскольку в Солнце сосредоточено около 99,9% всей массы Солнечной системы и его гравитационное поле является подавляющим.

Термины газ, лед и камень используют, чтобы охарактеризовать различные классы веществ, встречающихся повсюду в Солнечной системе. Камень используется, чтобы охарактеризовать соединения с высокими температурами конденсации или плавления. Каменные соединения обычно включают силикаты и металлы, такие как железо и никель. Они преобладают во внутренней части Солнечной системы, формируя большинство планет земной группы и астероидов. Газы – вещества с чрезвычайно низкими температурами плавления и высоким давлением насыщенного пара, такие как молекулярный водород, гелий и неон, которые в туманности всегда были в газообразном состоянии. Они доминируют в средней части Солнечной системы, составляя большую часть Юпитера и Сатурна. Льды таких веществ, как вода, метан, аммиак, сероводород и углекислый газ имеют температуры плавления до нескольких сотен градусов цельсия, в то время как их фаза зависит от окружающего давления и температуры. Большинство спутников планет – гигантов содержат ледяные субстанции, также они составляют большую часть Урана и Нептуна и многочисленных малых объектов, расположенных за орбитой Нептуна. Газы и льды вместе классифицируют как летучие вещества.

Источник

Естествознание. 10 класс

Конспект урока

Естествознание, 10 класс

Урок 49. Рождение Вселенной

Перечень вопросов, рассматриваемых в теме:

С чего все началось?

Стационарна ли Вселенная?

Какие наблюдения подтверждают теорию большого взрыва?

Глоссарий по теме:

Космология – наука, изучающая происхождение и эволюцию Вселенной как единого целого.

Красное смещение – сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону.

Закон Хаббла (закон всеобщего разбегания галактик) — космологический закон, описывающий расширение Вселенной и связывающий скорость взаимного удаления галактик с расстоянием между ними.

Большой взрыв — общепринятая космологическая модель, описывающая раннее развитие Вселенной, а именно — начало расширения Вселенной.

Реликтовое излучение (лат. relictum — остаток) — тепловое излучение, равномерно заполняющее Вселенную.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

  1. Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017. : с 222 – 224.
  2. Капица П. Л. Эксперимент, Теория, Практика. – М.: 1991. — с.50-65.
  3. Хокинг Краткая история времени. От Большого взрыва до чёрных дыр. –М.: АСТ, 2017: с.49 – 68, 139 – 170.

Открытые электронные ресурсы по теме урока:

Теоретический материал для самостоятельного изучения

Как Вы уже знаете, в структуру Вселенной входят туманности, галактики, звезды, планеты и их спутники. В нашей галактике «Млечный путь» от 200 до 400 миллиардов звезд, а во Вселенной существует миллиарды таких галактик. Когда мы смотрим на самую дальнюю из видимых звезд, мы смотрим примерно на 4 миллиарда лет в прошлое.

В 1929 году, исследуя взаимозависимость между разделяющими галактиками расстояниями и их относительными скоростями, американский астроном Эдвин Хаббл на уровне статистической закономерности смог установить численное соотношение, связывающее скорость взаимного удаления галактик с расстоянием между ними. Эта закономерность получила название закон Хаббла: скорость относительного удаления галактик (v) пропорциональна расстоянию между ними (r), т.е. v = Hr, где Н – коэффициент пропорциональности или постоянная Хаббла. По уточненным на 2010 г. данным Н ≈ 70, 4 (км/с) / Мпк, т.е. две галактики, разделённые расстоянием в 1 Мпк ≈ 3∙10 19 км, в среднем удаляются примерно со скоростью 70,4 км/с.

Основой для понимания закона Хаббла является эффект Доплера, описывающий изменение длины волны света движущегося объекта (в данном случае звезды и галактики) по отношения к наблюдателю. Суть этого эффекта состоит в следующем: когда происходит сближение источника света и наблюдателя, изменение частоты и соответственно длины волны света движущегося объекта в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда источник света и наблюдатель отдаляются друг от друга — спектральные линии смещаются в сторону длинных волн (красное смещение). Изучая спектры галактик, Хаббл обнаружил, что линии поглощения в этих спектрах существенно смещены по длине волны в красную сторону. Это позволило ученому сделать вывод о том, что почти все галактики удаляются от нас, а разбегание галактик может быть объяснено расширением всей Вселенной. Таким образом, в 1929 году Хаббл впервые установил нестационарность Вселенной.

Концепцию нестационарности Вселенной предложил советский физик Александр Фридман еще в 1922 году. Он теоретически разработал и математически обосновал возможные варианты ее эволюции, которые сейчас называют моделями Фридмана. Согласно этой теории существует некоторое критическое значение средней плотности Вселенной — 10 29 г/см 3 . Если средняя плотность Вселенной меньше критической, то ее ожидает бесконечное расширение, если больше критической, то под действием гравитации через какое-то время начнется процесс сближения галактик и «схлопывания» Вселенной, если же средняя плотность Вселенной и критическая совпадают, то расширение Вселенной постепенно прекращается. В течение многих лет эту концепцию не принимали всерьёз. Эйнштейн считал, что Вселенная статична. Она всегда была и будет неизменной. Но обнаруженные Эдвином Хабблом закономерности изменили представления о рождении Вселенной.

Наблюдаемое расширение Вселенной можно трактовать как следствие первоначального Большого взрыва, произошедшего в начале существования нашей Вселенной. Теория большого взрыва строится на том, что материя и энергия, из которых состоит все сущее во Вселенной, ранее находилось в состоянии, характеризующемся крайне высокой температурой (Т > 10 30 К), плотностью (ρ > 10 93 г/см 3 ) и давлением. Все из чего на данный момент состоит Вселенная, заключалось в микроскопически малой частице, которая в какой-то момент пришла в нестабильное состояние. В результате этого примерно 13,7 миллиардов лет назад произошел Большой взрыв, после которого началось быстрое расширение Вселенной. Это привело к ее охлаждению до такой температуры, что энергия начала превращение в первые субатомные частицы, которые только через несколько тысяч лет объединились в первые атомы. Примерно после первого миллиона лет атомы двух самых легких элементов, водорода и гелия, стали стабильными. Под действием сил притяжения начали концентрироваться облака материи. В результате сформировались галактики, звезды первого поколения, состоящих в основном из водорода и гелия. Формирование более тяжелых химических элементов происходило в недрах звезд. Звезды эволюционировали, образовывались сверхновые, в результате этого появлялись более тяжелые элементы. Они формировали звезды второго поколения, содержащие азот, кислород, неон и др. Параллельно образуются планетарные системы. Примером звезды второго поколения может служить Солнце, ее примерный возраст 7–10 млрд лет. А возраст Солнечной системы оценивается примерно в 5,5 млрд. лет.

Читайте также:  Алгоритм заполнения таблицы истинности

Подтверждением модели Большого взрыва в 1965 г. послужило исследование американских радиоастрономов А. Пензиас и Р. Вильсон. Они обнаружили радиоизлучения Вселенной, идущие равномерно по всем направления с температурой около 2,7 К и не имеющие источника. Это излучение, названное реликтовым, интерпретируют как остаточное излучение ранней горячей Вселенной. Реликтовое излучение – это самое древнее излучение, которое наблюдается во Вселенной и оно может рассказать о сценарии Большого взрыва.

Для воссоздания первых секунд существования Вселенной в Швейцарии построен ускоритель элементарных частиц – Большой адронный коллайдер. Таких ускорителей в истории физики ещё не бывало. CERN (Conseil Européenne pour la Recherche Nucléaire) — это самый большой в мире экспериментальный комплекс, длиной в 27 км. В его проектах принимает участие несколько тысяч исследователей и ученых из 80 стран мира. Именно он позволил открыть знаменитый бозон Хиггса – квант поля, придающего элементарным частицам массу; установить рекордную температуру, когда-либо созданную человеком (примерно 5,5 триллионов градусов Цельсия) и еще много открытий из области физики высоких энергий.

Совместные международные проекты и программы осуществляются и при исследовании и использовании космического пространства. Они охватывают самые разные сферы космической деятельности: создание образцов космической техники, совместные пилотируемые полеты, проведение научных исследований, использование результатов космической деятельности и других глобальных космических проектов, обеспечивающих устойчивое развитие человечества.

Выводы: Вселенная как система представляет собой единство многообразия иерархически расположенных объектов. Основные структурные элементы Вселенной – галактики, в состав которых входят звездные системы, газовые и пылевые туманности, планетные системы.

Вселенная согласно современным представлениям не стационарна, она эволюционирует. Наблюдается ускоренное расширение Вселенной. Химические элементы синтезировались в ходе эволюции Вселенной и космических объектов, прежде всего звезд.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1: Установите соответствие между названием и его описанием

Б. Реликтовое излучение

В. Эффект Доплера

Правильный ответ: А.2; Б.1; В.3

Подсказка: Воспользуйтесь глоссарием по теме урока

Задание 2. За единицу измерения расстояний между небесными телами за пределами Солнечной системы принимают парсек (пк).

1 пк = 3,08567758128 ∙1013 километр

Данная единица измерения не только выполняет практическую функцию, но и добавляет удобства астрономам. Гораздо проще сказать, что расстояние от Солнца до ближайшей звезды равно 1,3 парсека, чем _________ триллионов километров. Сделайте вычисления и заполните пропуск в тексте (ответ запишите с точностью до десятитысячных)

Правильный вариант: 40,1138.

Подсказка: 1 пк = 30, 8568 триллионов километров

Примечание: Проксима Центавра — красный карлик, относящийся к звёздной системе Альфа Центавра, ближайшая к Земле звезда после Солнца.

Источник

Теории происхождения Вселенной и ее модели

  • 12 Январь 2021
  • 8 минут
  • 27 591
  • 1

как появилась вселенная

Сегодня мы говорим об этой, ну как ее, Вселенной. Так уж получилось, что однажды она откуда-то появилась, и вот все мы здесь. Кто-то читает эту статью, кто-то готовится к экзамену, проклиная все на свете. Самолеты летают, поезда ходят, планеты крутятся, где-то всегда что-то происходит. Людям всегда было интересно знать один сложный ответ на простой вопрос. Как же все начиналось и как это мы докатились до того, что есть? Иными словами — как родилась Вселенная?

Итак, вот они — разные версии и модели происхождения Вселенной.

Креационизм: все создал Господь Бог

КреационизмКреационизм

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога. Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им. В бесконечном универсуме обнаруживается деятельность бесконечно совершенного Разума. Обычное представление обо мне, как об атеисте – большое заблуждение. Если это представление почерпнуто из моих научных работ, могу сказать, что мои научные работы не поняты»

Альберт ЭйнштейнАльберт Эйнштейн

Теория Большого Взрыва

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Во всяком случае, о ней слышал практически каждый. Что говорит нам Большой Взрыв? Однажды, лет эдак 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. В один прекрасный момент (если так можно сказать -времени-то не было) сингулярность не выдержала из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

Большой ВзрывБольшой Взрыв

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется. В 20-м веке существовало множество альтернативных теорий происхождения Вселенной. Одной из самых популярных была модель стационарной Вселенной, за которую ратовал сам Эйнштейн. Согласно этой модели, Вселенная не расширяется, а находиться в стационарном состоянии благодаря какой-то удерживающей ее силе.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления — самые весомые доводы в пользу правильности теории. Возможно, кроме этого вам будет полезна статья о том, как создать презентацию в ворде.

Большой взрывБольшой взрыв

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория струн

Современное изучение эволюции Вселенной невозможно без согласования его с квантовой теорией. Так, например, в рамках теории струн (теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн), предполагается модель множественной Вселенной. Конечно, там тоже был Большой Взрыв, но он произошел не просто так и из ничего, а, возможно, в результате столкновения нашей Вселенной с какой-то другой, еще одной Вселенной.

Собственно, кроме Большого Взрыва, породившего нашу Вселенную, во множественной Вселенной происходит множество других Больших Взрывов, порождающих множество других Вселенных, развивающихся по своим, отличным от известных нам законам физики.

ШелдонШелдон

Скорее всего мы никогда не узнаем наверняка, как, откуда и почему появилась Вселенная. Тем не менее, размышлять об этом можно очень долго и интересно, а чтобы у Вас было достаточно пищи для размышлений, предлагаем посмотреть увлекательное видео на тему современных теорий происхождения Вселенной.

Проблемы развития Вселенной слишком масштабны. Настолько масштабны, что, по сути, даже не являются проблемами. Предоставим физикам-теоретикам ломать над ними головы и перенесемся из глубин Вселенной на Землю, где нас, возможно, ждет неначатый курсач или диплом. Если это так, мы предлагаем свое решение этого вопроса. Закажите отличную работу у авторов Zaochnik, вздохните спокойно, и будьте в гармонии с собой и Вселенной.

Источник

Adblock
detector