Меню

Клеточная мембрана строение и функции кратко таблица

Познание мира

Клеточная мембрана — определение, состав, структура и функции

  1. Наружная тонкая мембрана или слой живой клетки называется клеточной мембраной.
  2. Она также известна как плазматическая мембрана в клетках животных.
  3. В клетках растений известна как плазмалемма.
  4. Термин «клеточная мембрана» был дан Нагели и Крамером (1885) для обозначения мембраны, покрывающей протопласт.

Есть два типа клеточной мембраны: цитоплазматическая мембрана: окружает всю протоплазму. Внутренняя мембрана: окружает различные клеточные органеллы и вакуоли.

  1. Внутри находятся белки, углеводы и нуклеиновые кислоты. Обычно они имеют большие размеры. Они растворимы в воде и состоят из заряда.
  2. Внешняя среда клетки немного отличается. Клетке также необходимы питательные вещества для своего роста и развития. Такие питательные вещества вместе с токсичными веществами, вредными для клетки, могут присутствовать во внешней среде.
  3. Может присутствовать ионы, кислоты и щелочи.
  4. Здесь клеточная мембрана действует как барьер.
  5. Небольшие молекулы, растворенные в жирах, могут проникать внутрь клеточной мембраны, но большие молекулы, растворимые в воде вещества, не могут проникать внутрь.
  6. Для них это непроницаемо. Таким образом, есть различные механизмы, с помощью которых такие вещества могут вводиться и выводиться.
  7. Присутствуют фасилитаторы и насосы.
  8. Он позволяет проникать внутрь только тем вещам, которые необходимы клеткам, но ограничивает попадание таких токсичных веществ.
  9. Все продукты жизнедеятельности камеры выводятся наружу.
  10. Клеточная мембрана помогает поддерживать гомеостаз.
  11. Он обеспечивает защиту всех внутренних органелл клетки.

Состав клеточной мембраны

  1. Большая часть клеточной мембраны состоит из 40-50% белков и 50-60% липидов.
  2. Мембранные липиды бывают трех типов: а) фосфолипиды б) гликолипиды в) стероиды.
  3. В разных мембранах пропорция липидов варьируется:

В состав плазматической мембраны входит:

  1. Фосфолипиды — 55%.
  2. Гликолипиды — 5%.
  3. Стероиды — 20%.
  4. Прочие липиды — 20%.

Состав бактериальной мембраны:

  1. Холестерин — 70%.
  2. Фосфолипиды — 30%.

Строение клеточной мембраны

Строение клеточной мембраны объясняется различными моделями:

  1. Триламинарная модель Даниэля Доусона.
  2. Мозаичная модель Сингера и Николсона.
  3. Клеточная мембрана Робертсона.

Триламинарная модель Даниэля Доусона

  1. Модель была предложена Даниэлем Доусоном и Хью Давсаном в 1935 году.
  2. Эта модель предлагает клеточную мембрану как твердую и стабильную структуру.
  3. В ней присутствует четыре молекулярных слоя, то есть два фосфолипидных и два белковых слоя.
  4. Состоит из фосфолипида. В его основе лежат физические и химические свойства плазматической мембраны.
  5. Плазматическая мембрана считается белок-липид-белок.
  6. Внешний и внутренний более плотный белок представляет собой монослой.
  7. Белок и липид присутствуют в паттерне PLLP.
  8. Молекулы белков содержат как полярные, так и неполярные боковые цепи.
  9. Они глобулярны и помогают придать стабильность плазматической мембране.
  10. Каждая молекула фосфолипида является полярной молекулой и состоит из гидрофильного и гидрофобного конца.
  11. Голова (глицерины) молекулы фосфолипида: они направлены в противоположные стороны.
  12. Они связаны с молекулами белка водородной связью, ионной связью и электростатической силой притяжения.
  13. Конец хвоста (жирные кислоты): удерживаются вместе, и лежат лицом друг к другу.
  14. Плазматическая мембрана представляет собой пористую мембрану с микроскопическими порами 7-10 A.

Недостатки модели Даниэля Доусона

  1. Клеточная мембрана — это динамическая, но не стабильная структура.
  2. Клеточная мембрана не является твердой структурой. Скорее это полутвердая структура.
  3. Это не объясняет функциональную специфичность и вариабельность биомембраны.
  4. Модель не объясняет такие движения, как активный перенос и перемещение водорастворимых веществ.
  5. Активный и объемный перенос материала через мембрану не может быть объяснен.

Мозаичная модель Зингера и Николсона

  1. Модель была предложена Зингером и Николсоном в 1972 году.
  2. Эта модель предполагает, что клеточная мембрана представляет собой квазифлюидную (полутвердую) и динамическую структуру.
  3. Эта модель также известна как белковые айсберги в море фосфолипидов.
  4. В этой модели липиды и интегральные белки расположены в мозаичном стиле.
  5. Между липидами и белками существует взаимодействие, которое приводит к текучести мембраны.
  6. Присутствуют два типа глобулярных белков, которые встроены в фосфолипидные бислои.

Мембранные белки бывают двух типов:

  1. Собственный белок.
  2. Внешний белок.

Собственный белок

  1. Внутри фосфолипидного бислоя эти внутренние белки встроены внутрь.
  2. Внутренние или интегральные белки или туннельные белки растворимы по своей природе. Интегральные белки образуют канал для прохождения воды, ионов и других водорастворимых растворенных веществ небольшого размера.
  3. Состоит из двух частей: гидрофильная голова: полярная по своей природе. Выступает из клеточной мембраны. Гидрофобный хвост: неполярный по своей природе. Находятся внутри мембраны, обращенной к центру.

Внешний белок

  1. Присутствуют на двух поверхностях мембраны в плавающей форме.
  2. Внешние белки прикреплены к фосфорильной поверхности.
  3. Они тоже электрически заряжены. Ионные связи или кальциевые мостики помогают в прикреплении.
  4. Они прикреплены неплотно.
  5. Их еще называют периферическими белками.
  6. Они расположены вне липидного бислоя.
  7. Они растворимы в природе.

Мембранные белки бывают пяти типов:

  1. Структурный белок: помогает поддерживать стабильность.
  2. Белок канала: он участвует в транспортировке воды и некоторых растворенных веществ.
  3. Белки-переносчики: для активной транспортировки.
  4. Ферменты: для различной метаболической активности.
  5. Рецепторный белок: для транспортировки гормонов и проведения нервных импульсов.

Преимущества мозаичной модели

  1. Эта модель объясняет динамическую и полужидкую структуру.
  2. Объясняется изменчивость клеточной мембраны.
  3. Объясняет перенос растворенного вещества и растворителя через клеточную мембрану.
  4. Объясняет активный и объемный перенос материала через клеточную мембрану.
  5. Соотношение липид: белок поддерживает эту модель.

Эта жидкая мозаичная модель является научной и широко принятой моделью клеточной мембраны.

Функции клеточной мембраны

Распознавание клеток

  1. В клеточной мембране присутствуют гликолипиды и гликопротеины. Это помогает в распознавании клетки.
  2. Это важно во время защиты от микробов и образования тканей.
  3. Связывание лигандов со специфическими рецепторами вызывает передачу сигнала.

Группа крови

На основе антигенов, присутствующих в клеточной мембране, можно определить группы крови и разделить их на A, B, AB, O.

Пищеварение

  1. В желудочно-кишечном тракте присутствуют микроворсинки.
  2. Это модифицированная клеточная мембрана, которая помогает переваривать пищевые продукты.

Передвижение

У амебы для передвижения присутствуют псевдоподии, которые представляют собой измененную структуру клеточной мембраны.

Активный носитель

Белок-носитель, присутствующий в клеточной мембране, помогает в активном переносе материалов.

Экзоцитоз

Это помогает в удалении шлаков и секреторных материалов.

Осмос

Он показывает полупроницаемую активность для транспортировки воды путем осмоса.

Диффузия

  1. Обмен газов с внешней средой происходит путем диффузии.
  2. Диффузия бывает двух типов: простая диффузия и облегченная диффузия.

Метаболизм

  1. Клеточная мембрана выполняет метаболические функции.
  2. На поверхности клетки присутствует несколько ферментов, которые участвуют в расщеплении внеклеточных питательных веществ.
  3. Некоторые участвуют в биосинтезе клеточной стенки.
  4. В случае прокариот дыхательные ферменты обнаруживаются в плазматической мембране.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник



Клеточная мембрана в биологии виды, строение и функции таблица

Содержание

  1. Клеточная мембрана и ее виды
  2. Строение клеточной мембраны
  3. Основные свойства плазматической мембраны
  4. Функции наружной мембраны клетки
  5. Какое значение имеет клеточная мембрана

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии,
  • ядро,
  • эндоплазматический ретикулум,
  • комплекс Гольджи,
  • лизосомы,
  • хлоропласты (в растительных клетках).
Читайте также:  Автокад связь между таблицами

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Источник

Основные функции и особенности строения клеточной мембраны

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Строение клеточной мембраны

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.

Строение клеточной мембраны

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Источник

Клеточная мембрана

Статья подготовлена специалистом исключительно в ознакомительных целях. Мы настоятельно призываем вас не заниматься самолечением. При появлении первых симптомов — обращайтесь к врачу. Рекомендуем к прочтению: «Почему нельзя заниматься самолечением?».

Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.

Термин «клеточная мембрана» используется уже около ста лет. Само слово «мембрана» в переводе с латыни означает «пленка». Но в случае в клеточной мембраной правильнее будет говорить и совокупности двух пленок, соединенных между собой определенным образом, причем, разные стороны этих пленок обладают разными свойствами.

Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.

Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.

История исследования клеточной мембраны

В 1925 году двое немецких ученых, Гортер и Грендель, смогли провести сложнейший эксперимент над красными кровяными тельцами человеческой крови, эритроцитами. С помощью осмотического удара исследователи получили так называемые «тени»– пустые оболочки эритроцитов, затем сложили их в одну стопку и измерили площадь поверхности. Следующим шагом стало вычисление количества липидов в клеточной мембране. С помощью ацетона ученые выделили липиды из «теней» и определили, что их как раз хватает на двойной сплошной слой.

Однако в ходе эксперимента было допущено две грубейших ошибки:

Использование ацетона не позволяет выделить из мембран абсолютно все липиды;

Площадь поверхности «теней» была высчитана по сухому весу, что тоже неправильно.

Поскольку первая ошибка давала минус в расчетах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие ученые принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.

В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными пленками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти пленки обладают таким высоким показателем поверхностного натяжения. Ученые представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.

Читайте также:  Как пишется согласно таблицы или таблице

В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчетливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.

В 1960 году, руководствуясь этими данными, американский микробиолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственно верной. Однако по мере развития науки рождалось все больше сомнений относительно однородности этих слоев. С точки зрения термодинамики такое строение крайне невыгодно – клеткам было бы очень сложно транспортировать вещества внутрь и наружу через весь «бутерброд». Кроме того, было доказано, что клеточные мембраны разных тканей имеют разную толщину и способ крепления, что обусловлено разными функциями органов.

В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Ученые установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.

В составе клеточных мембран присутствуют белки трех видов:

Периферические – крепятся на поверхности пленки;

Полуинтегральные – частично проникают внутрь билипидного слоя;

Интегральные – полностью пронизывают мембрану.

Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из нее продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.

Свойства и функции клеточной мембраны

Клеточная мембрана выполняет следующие функции:

Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определенный размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для нее пероксидов;

Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из нее нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из нее ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объеме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определенных типов молекул;

Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;

Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;

Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твердая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;

Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;

Рецепторную— белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;

Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;

Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трех типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;

Маркировочную – на поверхности клеточных мембран имеются так называемые «ярлыки» — антигены, состоящие из гликопротеинов (белков с присоединенными к ним разветвленными олигосахаридными боковыми цепями). Поскольку боковые цепи могут иметь огромное множество конфигураций, каждый тип клеток получает свой уникальный ярлык, который позволяет другим клеткам организма узнавать их «в лицо» и правильно на них реагировать. Вот почему, например, иммунные клетки человека, макрофаги, без труда распознают чужака, проникшего в организм (инфекцию, вирус) и пытаются его уничтожить. То же самое происходит с больными, мутировавшими и старыми клетками – ярлык на их клеточной мембране меняется, и организм избавляется от них.

Клеточный обмен происходит через мембраны, и может осуществляться с помощью трех основных типов реакций:

Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);

Пиноцитоз – процесс захвата поверхностью клеточной мембраны соприкасающихся с нею молекул жидкости. Для питания по типу пиноцитоза клетка выращивает на своей мембране тонкие пушистые выросты в форме усиков, которые как бы окружают капельку жидкости, и получается пузырек. Сначала этот пузырек выпячивается над поверхностью мембраны, а затем «проглатывается» — прячется внутрь клетки, и его стенки сливаются уже с внутренней поверхностью клеточной мембраны. Пиноцитоз проходит почти во всех живых клетках;

Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырек сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.

Строение клеточной мембраны

Клеточные мембраны содержат липиды трех классов:

Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жесткими. Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.

Читайте также:  Группы углеводов таблица для

Но самой важной составляющей, как видно из предыдущего раздела о функциях клеточных мембран, являются белки. Их состав, назначение и расположение весьма разнообразны, но есть нечто общее, что всех их объединяет: вокруг белков клеточных мембран всегда расположены аннулярные липиды. Это особые жиры, которые четко структурированы, устойчивы, имеют в своем составе больше насыщенных жирных кислот, и выделяются из мембран вместе с «подшефными» белками. Это своего рода персональная защитная оболочка для белков, без которой они бы просто не работали.

Структура клеточной мембраны трехслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые не способны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.

Если взглянуть на клеточную мембрану через микроскоп, то можно увидеть слой липидов, образованный мельчайшими шарообразными молекулами, по которому, как по морю, плавают большие белковые клетки разной формы. Точно такие же мембраны делят внутреннее пространство каждой клетки на отсеки, в которых уютно располагаются ядро, хлоропласты и митохондрии. Не будь внутри клетки отдельных «комнат», органоиды бы слиплись друг с другом и не смогли бы выполнять свои функции правильно.

Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.

Как видно из этого определения, мембрана является важнейшей функциональной составляющей любой клетки. Её значение так же велико, как значение ядра, митохондрий и прочих клеточных органелл. А уникальные свойства мембраны обусловлены её строением: она состоит из двух плёночек, слепленных друг с другом особым образом. Молекулы фосфолипидов в мембране расположены гидрофильными головками наружу, а гидрофобными хвостами внутрь. Поэтому одна сторона плёночки смачивается водой, а другая – нет. Так вот, эти плёночки соединяются друг с другом несмачиваемыми сторонами внутрь, образуя билипидный слой, окруженный молекулами белков. Это и есть то самое «бутербродное» строение клеточной мембраны.

Ионные каналы клеточных мембран

Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?

Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.

Существует два типа проводящих белков:

Транспортеры – полуинтегральные белки-насосы;

Каналоформеры – интегральные белки.

Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.

Важнейшие выводы о строении и функциях клеточных мембран

Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило ученымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди все чаще заболевают онкологией?

Рак ежегодно уносит около 17 миллионов жизней во всем мире, и является четвертой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.

Чем объясняется настоящая эпидемия рака, и причем тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжелой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.

Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.

Зная особенности строения и функций клеточных мембран разных клеток, врачи могут использовать эти сведения для оказания направленного, адресноготерапевтического воздействия на организм. Многие современные лекарственные препараты, попадая в наше тело, ищут нужную «мишень», в качестве которой могут выступать ионные каналы, ферменты, рецепторы и биомаркеры клеточных мембран. Такой способ лечения позволяет добиться более высоких результатов при минимальных побочных эффектах.

Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспаленные сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.

Образование: Московский медицинский институт им. И. М. Сеченова, специальность — «Лечебное дело» в 1991 году, в 1993 году «Профессиональные болезни», в 1996 году «Терапия».
Наши авторы

Источник

Adblock
detector