Меню

Какие существуют основные логические операции что такое таблица



Что такое Логические операции

Логические операции — это создание сложных суждений из двух и более простых. Ещё они называются логическими связками. С помощью логических операций можно проверить, если связь между высказываниями является истинной или ложной.

Основные логические операции:

  • конъюнкция (логическое «и», A ⋀ B);
  • дизъюнкция (логическое «или», A ∨ B);
  • отрицание («не», Ā);
  • импликация («если…, то…», A → B);
  • эквиваленция («тогда и только тогда, когда», A ↔️ B).

Диаграмма Эйлера-Венна

Диаграмма Эйлера-Венна

Таблицы истинности

Конъюнкция (логическое «и», A ⋀ B)

A ⋀ B истинно только если оба утверждения (A и B) истинны.

A B A ⋀ B
1
1
1 1 1

Дизъюнкция (логическое «или», A ∨ B)

A v B является истинным, только если A или B истинно (когда оба являются истинными тоже).

A B A ∨ B
1 1
1 1
1 1 1

Отрицание (логическое «не», Ā)

Не A верно когда A ложно, и наоборот (нужно просто поставить наоборот).

A Ā
1
1

Импликация (логическое «если…, то…», A → B)

Утверждение A → B истинно, когда оба простых утверждения A и B верны. A → B всегда верно, если A ложно. Единственная возможность, когда может случиться что A → B ложно, это когда A истинно, а B ложно. Ещё импликация называется логическим следованием.

A B A → B
1
1 1
1
1 1 1

Логическое выражение

Логическое выражение — это лингвистическое выражение, которое может быть истинным или ложным.

  • Токио — столица Японии (истинно);
  • число Пи (3,14159) — рациональное число (ложно);

Не является логическим выражением:

  • какой сегодня день недели?;
  • х²—х—3=0.

Источник

Основные логические операции

  • Виды операций
  • Логическое умножение (конъюнкция)
  • Логическое сложение (дизъюнкция)
  • Логическое отрицание (инверсия)
  • Логическое следование (импликация)
  • Логическая равнозначность (эквивалентность)
  • Стрелка Пирса
  • Штрих Шеффера
  • Порядок выполнения операций

Логические операции в создании компьютерных программ — действия, которые производятся над входными данными. Такие функции производятся над сигналами булевского типа, то есть над примитивными выражениями, имеющими только два возможных значения: истина или ложь.

Виды операций

В программировании выделяют следующие виды функций:

  1. Логическое умножение или конъюнкция.
  2. Логическое сложение или дизъюнкция.
  3. Логическое отрицание или инверсия.
  4. Логическое следование или импликация.
  5. Логическая равнозначность или эквивалентность.
  6. Стрелка Пирса.
  7. Штрих Шеффера .

Логическое умножение (конъюнкция)

Конъюнкция — это действие, в результате которого каждым двум входным данным соответствует одно новое высказывание. Истинное значение на выходе получается, когда оба входных значения истинны.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Для обозначения логического умножения используют союз «и», значки \( \wedge\) , \(\&.\)

Таблица истинности для логического умножения выглядит так:

Таблица истинности логического умножения

A, B — исходные данные;

A и B — значение, приобретаемое в результате реализации конъюнкции.

Из таблицы следуют свойства логического умножения:

  • при ложном значении одной входной информации из двух конъюнкция будет ложной;
  • при истинном значении переменных конъюнкция будет истинной;
  • результат логического умножения не зависит от порядка записи ее переменных.

Логическое сложение (дизъюнкция)

Дизъюнкция — это булева функция, в итоге которой выходные данные будут ложными только при ложности всех исходных выражений.

Обозначается дизъюнкция союзом «или», символами +, \( \vee\) .

Таблица истинности логического сложения:

Таблица истинности логического сложения

A, B — входная информация;

A или B — значение, приобретаемое в результате выполнения дизъюнкции.

Для дизъюнкции справедливы следующие утверждения:

  • при истинности хотя бы одного подвыражения дизъюнкция будет истинной;
  • при ложности всех высказываний дизъюнкция примет ложное значение;
  • итог дизъюнкции не зависит от перемены мест слагаемых.

Логическое отрицание (инверсия)

Инверсия — выражение, ставящее в соответствие одному значению противоположное.

Условное обозначение логического отрицания: с помощью частицы «не», символов ¯, \(\neg.\)

Таблица истинности инверсии:

Таблица истинности инверсии

A — исходные данные;

не A — значение, приобретаемое в результате логического отрицания.

Логическое следование (импликация)

Импликация — это булева операция, ложная лишь тогда, когда первая исходная переменная является истиной, а вторая — ложью.

Следование записывается с помощью знака \(\rightarrow.\)

Таблица истинности для импликации:

Таблица истинности для импликации

A — входная информация, означающая условие;

B — входная информация, означающая следствие;

A → B — значение, приобретаемое в результате импликации.

По своему употреблению данная связка схожа со значением союзов «если. то. ».

Логическая равнозначность (эквивалентность)

Эквивалентность — выражение, являющееся истинным лишь в случае равенства двух входных элементов.

При записи равнозначности используют стрелки \(\Leftrightarrow\) , \(\leftrightarrow\) , \(\Xi\) .

Таблица истинности для равнозначности:

Таблица истинности для равнозначности

Стрелка Пирса

Стрелка Пирса — двухместное логическое действие со следующей последовательностью: сначала над исходными показаниями производится дизъюнкция, затем происходит отрицание полученного результата.

Данная манипуляция является отрицание логического сложения. Свое название рассматриваемая функция получила от своего автора — американского ученого Чарльза Пирса.

Запись стрелки Пирса осуществляется через знак \(\downarrow\) .

Таблица истинности для этой операции следующая:

Стрелка Пирса

Особенность стрелки Пирса заключается в ее возможности строить другие булевы функции.

Пример

Штрих Шеффера

Штрих Шеффера — это действие, приводящее к ложному итогу лишь при истинности обоих исходных данных. По порядку выполнения операций эта функция эквивалентна отрицанию конъюнкции.

Символ Шеффера назван по фамилии своего создателя — американского логика Генри Шеффера — и обозначается посредством знака \(\vert.\)

Таблица истинности для данной функции:

Штрих Шеффера

С помощью штриха Шеффера можно воспроизвести другие логические манипуляции.

Пример

Порядок выполнения операций

В составном логическом выражении действия выполняются в такой последовательности:

  • инверсия;
  • конъюнкция;
  • дизъюнкция;
  • импликация;
  • эквивалентность.

Для построения нужного порядка, как и в математических выражениях, используют скобки.

Источник

Логические операции и выражения

Логика
Логические операции и выражения
Таблица истинности
Логический элемент

В нашей жизни бывают случаи когда нет необходимости вникать в глубину того, или иного вопроса, — достаточно и его поверхностного понимания. Так и сейчас, изучая логические операции, часть вопросов мы рассмотрим поверхностно, а часть, которая связана с программированием микроконтроллеров, подробно.

Логические операции

Логика это не просто древнегреческое слово, а целая наука, изучение которой позволяет нам правильно и здраво рассуждать, и, соответственно, делать правильные выводы из наших рассуждений, чего, однако, очень не хватает в нашем современном мире (поэтому и говорят «нелогичный человек», «нелогичный поступок»).
Рассуждая о чем-либо, мы, на основе логических заключений, делаем соответствующие выводы. К примеру, думая о своем товарище, на основе каких-то фактах, характеризующих его, мы можем сделать вывод – друг он нам, или нет (или: «и не друг, и не враг, – а так»).

В конце 19 века, группа лиц, под названием «математики», решила перевести весь наш мыслительный процесс в более понятную для них форму – математическую. И из простой, человеческой логики, появилась математическая, или – символическая логика. В чем суть этого метода. Любая высказанная нами мысль основывается на каких то фактах – кирпичиках, составляющих ее основу. Так вот, в математической логике эти «кирпичики» имеют только два состояния – «ложь» или «истина».
1+1 равно 2 – истинна, 1+1 не равно 2 – ложь. Все просто и понятно. А из таких «кирпичиков», а у математиков они называются – «простые выражения», которые могут быть только или «истинной» , или «ложью» , складываются «сложные выражения», которые тоже могут быть только или «истинными», или «ложными» . А весь этот процесс получения сложного выражения из простых можно описать «логической формулой» или, как еще говорят, – «логическим выражением».

Логическое выражение

Все современные цифровые технологии основываются на логических операциях , без них никуда не деться. Все цифровые микросхемы в своей работе используют логические схемы (выполняют логические операции, в том числе и микроконтроллер).
Создавая программу, мы прописываем все действия микроконтроллера основываясь на своей логике с применением логических операций, иногда даже и не подозревая об этом, которые применяем к логическим выражениям.
Пример – «если в ходе выполнения программы получен такой результат, то дальше программа пойдет вот таким путем, а если мы получили другой результат, то программа дальше пойдет вот этим путем» – типичное выполнение логической операции.
В программировании логическая операция применяется не только к логическому выражению, но и для операций с двоичными числами, так называемые «логические побитовые (битовые) операции», которые очень сильно облегчают тяжелую жизнь программиста.

Основные логические операции

Существует три основных логических операции при помощи которых можно записать любое логическое выражение (не пугайтесь):

1. Инверсия
2. Конъюнкция
3. Дизъюнкция

Конъюнкция , оно же «Логическое И», оно же «Логическое умножение».
Мы выбираем название «Логическое И» – оно чаще встречается в программировании.
Допустим, у нас есть два простых выражения – А и В. Эти выражения могут иметь значения или 1 (истина), или 0 (ложь). При выполнении операции «Логическое И» мы получим сложное выражение которое примет значение 1 (истина) только в том случае если и А, и В имеют значение 1 (истина), во всех других случаях результат будет 0 (ложь).
Операция «Логическое И» имеет обозначения (в языках программирования): И, &&, AND, &.

Дизъюнкция , оно же «Логическое ИЛИ», оно же «Логическое сложение».
Мы выбираем название «Логическое ИЛИ». Кстати, если логически подумать, то можно и догадаться какие результаты будут при выполнении этой операции.
В «Логическом И» результат равен 1, если и А, и В, равны 1, а в «Логическом ИЛИ» результат будет равен 1, если или А, или В, равны единице.
Операция «Логическое ИЛИ» имеет обозначения: ИЛИ, ||, OR, | .

Инверсия , оно же «Логическое НЕ», оно же «Отрицание».
Мы выбираем название «Логическое НЕ».
Операция «Логическое НЕ» имеет обозначения: НЕ, !, NOT .
Тут вообще все просто:
Если А=1 (истина), то после выполнения операции «Отрицание» А примет значение 0, то есть становится ложным. И наоборот.
Есть еще одно название этой операции «Инвертор», а применяется оно в отношении цифровых микросхем.

В программировании часто применяется еще одна логическая операция – симбиоз «Логического И» и «Логического ИЛИ»:
Строгая дизъюнкция , оно же «Исключающее ИЛИ», оно же «Логическое сложение, исключающее ИЛИ», оно же «Сложение по модулю 2»
Мы выбираем название «Исключающее ИЛИ»
Операция «Исключающее ИЛИ» имеет обозначения: Искл.ИЛИ, XOR, ^ .
В этом случае, при выполнении операции «Исключающее ИЛИ», результат будет истинен (равен 1), если А не равно В. В остальных случаях результат будет равен 0 (ложный).

Таблица истинности

Все логические выражения, получающиеся из логических операций, можно свести в таблицы, которые называются таблицы истинности

Таблица истинности - определение

Таблицы истинности

Таблица истинности

Логические элементы

Логический элемент

Логические операции – основа цифровой техники. Даже цифровые микросхемы, которые предназначены только для выполнения логических операций, называют – «логические микросхемы» , или еще проще – «логика» .
Немного остановимся на микросхемах логики и мы.
Работа цифровых микросхем логики основана на выполнение трех основных логических операций, с которыми мы ознакомились выше. Сочетание этих логических операций позволило создать большое количество цифровых микросхем логики.
Основа таких микросхем – логический элемент.

Логический элемент выполняющий операцию «Логическое И»

Логическое И

Логический элемент выполняющий операцию «Логическое ИЛИ»

Логическое ИЛИ

Логический элемент выполняющий операцию «Логическое НЕ»

Логическое НЕ

Логический элемент выполняющий операцию «Исключающее ИЛИ»

Исключающее ИЛИ

Логический элемент выполняющий операцию «Логическое ИЛИ-НЕ»

Логическое ИЛИ-НЕ

Логический элемент выполняющий операцию «Логическое И-НЕ»

Логическое И-НЕ

Кроме таких комбинаций логических операций существует еще ряд других.

Кстати, есть еще одна разновидность логики – женская логика. Весьма интересная штука. Но так как она к сегодняшней теме не относится, то придется, к сожалению, этот вопрос опустить.

Женская логика

(25 голосов, оценка: 4,68 из 5)

Источник

Логические операции с примерами

Популярное

  • Устройство и программирование микроконтроллеров AVR для начинающих – 143
  • Трехканальный термостат, терморегулятор, таймер на ATmega8 – 70
  • Двухканальный термостат, терморегулятор на ATmega8 – 67

Логика
Логические операции и выражения
Таблица истинности
Логический элемент

В нашей жизни бывают случаи когда нет необходимости вникать в глубину того, или иного вопроса, — достаточно и его поверхностного понимания. Так и сейчас, изучая логические операции, часть вопросов мы рассмотрим поверхностно, а часть, которая связана с программированием микроконтроллеров, подробно.

Логика это не просто древнегреческое слово, а целая наука, изучение которой позволяет нам правильно и здраво рассуждать, и, соответственно, делать правильные выводы из наших рассуждений, чего, однако, очень не хватает в нашем современном мире (поэтому и говорят «нелогичный человек», «нелогичный поступок»).
Рассуждая о чем-либо, мы, на основе логических заключений, делаем соответствующие выводы. К примеру, думая о своем товарище, на основе каких-то фактах, характеризующих его, мы можем сделать вывод – друг он нам, или нет (или: «и не друг, и не враг, – а так»).

В конце 19 века, группа лиц, под названием «математики», решила перевести весь наш мыслительный процесс в более понятную для них форму – математическую. И из простой, человеческой логики, появилась математическая, или – символическая логика. В чем суть этого метода. Любая высказанная нами мысль основывается на каких то фактах – кирпичиках, составляющих ее основу. Так вот, в математической логике эти «кирпичики» имеют только два состояния – «ложь» или «истина».
1+1 равно 2 – истинна, 1+1 не равно 2 – ложь. Все просто и понятно. А из таких «кирпичиков», а у математиков они называются – «простые выражения», которые могут быть только или «истинной» , или «ложью» , складываются «сложные выражения», которые тоже могут быть только или «истинными», или «ложными» . А весь этот процесс получения сложного выражения из простых можно описать «логической формулой» или, как еще говорят, – «логическим выражением».

Все современные цифровые технологии основываются на логических операциях , без них никуда не деться. Все цифровые микросхемы в своей работе используют логические схемы (выполняют логические операции, в том числе и микроконтроллер).
Создавая программу, мы прописываем все действия микроконтроллера основываясь на своей логике с применением логических операций, иногда даже и не подозревая об этом, которые применяем к логическим выражениям.
Пример – «если в ходе выполнения программы получен такой результат, то дальше программа пойдет вот таким путем, а если мы получили другой результат, то программа дальше пойдет вот этим путем» – типичное выполнение логической операции.
В программировании логическая операция применяется не только к логическому выражению, но и для операций с двоичными числами, так называемые «логические побитовые (битовые) операции», которые очень сильно облегчают тяжелую жизнь программиста.

Основные логические операции

Существует три основных логических операции при помощи которых можно записать любое логическое выражение (не пугайтесь) :

Конъюнкция , оно же «Логическое И», оно же «Логическое умножение».
Мы выбираем название «Логическое И» – оно чаще встречается в программировании.
Допустим, у нас есть два простых выражения – А и В. Эти выражения могут иметь значения или 1 (истина), или 0 (ложь). При выполнении операции «Логическое И» мы получим сложное выражение которое примет значение 1 (истина) только в том случае если и А, и В имеют значение 1 (истина), во всех других случаях результат будет 0 (ложь).
Операция «Логическое И» имеет обозначения (в языках программирования): И, &&, AND, &.

Дизъюнкция , оно же «Логическое ИЛИ», оно же «Логическое сложение».
Мы выбираем название «Логическое ИЛИ». Кстати, если логически подумать, то можно и догадаться какие результаты будут при выполнении этой операции.
В «Логическом И» результат равен 1, если и А, и В, равны 1, а в «Логическом ИЛИ» результат будет равен 1, если или А, или В, равны единице.
Операция «Логическое ИЛИ» имеет обозначения: ИЛИ, ||, OR, | .

Инверсия , оно же «Логическое НЕ», оно же «Отрицание».
Мы выбираем название «Логическое НЕ».
Операция «Логическое НЕ» имеет обозначения: НЕ, !, NOT .
Тут вообще все просто:
Если А=1 (истина), то после выполнения операции «Отрицание» А примет значение 0, то есть становится ложным. И наоборот.
Есть еще одно название этой операции «Инвертор», а применяется оно в отношении цифровых микросхем.

В программировании часто применяется еще одна логическая операция – симбиоз «Логического И» и «Логического ИЛИ»:
Строгая дизъюнкция , оно же «Исключающее ИЛИ», оно же «Логическое сложение, исключающее ИЛИ», оно же «Сложение по модулю 2»
Мы выбираем название «Исключающее ИЛИ»
Операция «Исключающее ИЛИ» имеет обозначения: Искл.ИЛИ, XOR, ^ .
В этом случае, при выполнении операции «Исключающее ИЛИ», результат будет истинен (равен 1), если А не равно В. В остальных случаях результат будет равен 0 (ложный).

Таблица истинности

Все логические выражения, получающиеся из логических операций, можно свести в таблицы, которые называются таблицы истинности

Источник

Таблица истинности логических операций — алгоритм построения

Определения и понятия

Под таблицей истинности понимают свод значений, которые может принять высказывание при сочетании различных входящих комбинаций. Другими словами, каждому набору функций или сигналам, присутствующим на входе чего-либо, соответствует строго определённые показатели на выходе. Все значения, являющиеся всевозможными высказываниями, называют логическими выражениями. Если в таблице последние столбцы логичных выражений идентичны, то рассматриваемый объект считается равносильным.

Любое выражение можно описать формулой, в которую будут включаться переменные, характеризующие состояния, и обозначающие функции знаки логических операций. Поэтому используя язык математики, в частности, алгебры, любое сложное высказывание можно разделить на несколько простых, а затем объединить логической связью.

Обычно значениями истинности описывают логическую функцию, у которой показатели параметров определяют верность. Раздел математики рассматривающий их на правдивость или ложность называется булевым. В 1854 году английский учёный Джордж Буль предложил метод, позволяющий проводить анализ классов и высказываний. Согласно ему, любое значение может принимать одно из двух состояний — истина или ложь.

Эти состояния принято обозначать арабскими цифрами один либо ноль или словами true и false. Это возможно из-за того, что для математики важна только истинность высказываний, а конкретное содержание второстепенно. Простые высказывания принято считать логическими переменными, а сложные — функциями логики. Выражения для упрощения записи обозначают латинскими буквами A, B, C.

Применение двух цифр подчёркивает соответствие между двоичной системой счисления и математической логикой. В итоге с помощью последней стало удобным описывать работу цифровых схем радиоэлектронной аппаратуры, алгоритмы в программировании, проводить синтез и анализ результата выполнения операций.

Суждение о правильности построения таблиц истинности для логических выражений основано на учёте всех переменных и операций, последовательно выполняющихся в рассматриваемой функции. Обычно для начертания используют 2 n +1 строк, где n обозначает количество входных переменных, и n+m столбцов, m — число значений на выходе.

Виды логических операций

В качестве наименьшей единицы измерения объёма данных принято считать бит. В него заносится одно из двух значений — ложь (0) или правда (1). Каждая ячейка, соответствующая биту, находится лишь в одном из этих состояний. Существуют определённые операции, используемые для действий с ячейками:

  1. AND (И) — применяется для сравнения двух бит. Результатом действия будет единица, но лишь в том случае, если значения двух ячеек одинаковое. При остальных вариантах итог будет иметь устойчивое нулевое состояние.
  2. OR (ИЛИ) — по сути, операция обратная AND. Результат становится нулевым, если содержимое двух сравниваемых бит одинаковое. В остальных случаях он равный единице.
  3. XOR (ИЛИ) — если значения, содержащиеся в двух сравниваемых битах противоположны, при выполнении логического действия результат будет равный единице. Во всех остальных случаях он будет равняться нулю.
  4. NOT (НЕ) — действие, используемое для одного бита. Если первоначально ячейка находилась в нулевом состоянии, то после выполнения над ней операции она станет равной единице и наоборот. Фактические это логическая инверсия.

Эти операции являются основными элементами при составлении таблиц истинности и получения возможного результата. На основании их построена алгебра Буля. Некоторые элементы получаются путём объединения нескольких операций. Так, существует состояние: NAND (И-НЕ) и NOR (ИЛИ-НЕ). Первый элемент является инверсией операции «И», а второй — «ИЛИ». На основании рассмотренных операторов строится работа всех цифровых интегральных схем.

В информатике существует своя терминология, обозначающая то или иное логическое действие. Так, AND называют операцией конъюнкции, OR — дизъюнкции, XOR — сложение по модулю 2, NOT — отрицание. Задача инженера при анализе схем или алгоритма сводится к выполнению булевой арифметики и упрощению выражений. Для этого используют различные правила и положения не требующих доказательства.

Аксиомы и законы

Построение таблиц в удобной форме позволяет определить, когда определённое действие или высказывание принимает верное значение, а в каком случае нет. В верхней строчке записывают логическую форму высказывания, а в столбцах — истинные значения. Некоторые комбинации высказываний всегда будут истинными или ложными, независимо от содержания. Поэтому и были сформулированы следующие законы:

  1. Торжества. Записывается в виде утверждения: А = А. В этом случае таблица будет состоять из двух комбинаций: ложной и правдивой. Бинарная логическая связка «Если А, то А» является материальной импликацией. Для такого варианта всегда можно сказать, что А есть А. Этот закон обозначает то, что нельзя подменять одно понятие другим, иначе возникнут логические ошибки.
  2. Противоречия. Согласно ему, утверждение, что А и НЕ-А, неверно: A & A = 0. Другими словами, если А истинное значение, то его отрицание не может быть ложным. То есть их перемножение будет всегда фальшивой операцией. Этот закон довольно часто применяется для упрощения сложных логических суждений.
  3. Третьего исключённого. Закон записывается в виде A v A = 1 и обозначает, что в один и тот же момент высказывание может быть только правдивым или ложным. То есть третьего не дано.

Эти три закона фундаментальны. Без их соблюдения сделать любое правильное утверждение невозможно.

Для решения логических задач с помощью таблиц истинности используют различные формулы, соответствующие разного вида операциям. Одно из них логическое умножение (конъюнкция). В этом случае считается, что функция истинная лишь тогда, когда оба выражения являются верными: F = A & B. Другое логическое сложение (дизъюнкция). Оно гласит, что если оба выражения ложны, то и логическая функция будет неверной.

Кроме того, используется закон:

  • инверсии (отрицания) — если логическое высказывание истинно, то отрицание его будет ложным выражением;
  • импликации (следования) — для всегда истинного сложного логического выражения ложь будет тогда, когда из верности следует отрицание;
  • эквивалентности (равнозначности) — выражение будет истинным лишь тогда, когда оба высказывания имеют одинаковое значение.

При построении таблиц нужно придерживаться установленного порядка выполнения упрощения операций. Вначале считают инверсию и конъюнкцию, а затем дизъюнкцию, импликацию и эквиваленцию. При изменении же порядка выполнения действий в описании логических операций используют скобки.

Алгоритм построения

Таблицы истинности показывают, какой вид может принять выражение при различных входящих в него значениях переменных. Для того чтобы их правильно построить и выполнить вычисление логического выражения нужно придерживаться установленного алгоритма. Построение таблиц выполняют в следующей последовательности:

  • подсчитывают количество переменных n;
  • вычисляют число строк для будущей таблицы используя формулу m = 2n+1;
  • определяют число логических операций;
  • устанавливают порядок выполнения операций в соответствии со скобками и приоритетами;
  • строят таблицу с указанием столбцов и наборов значений, заданных логических операций;
  • заполняют оставшиеся ячейки в таблице.

Для заполнения таблиц нужно упрощать выражения с учётом последовательности выполнения операций. При этом учитывать, что если значение какого-то из аргументов функции в соответствующей строке таблицы будет равное нулю, то записывать его нужно в виде отрицания.

Пример задания

Пусть необходимо построить таблицу для логического выражения F = (A → B) * (A + B). Эта формула состоит из двух логических переменных A и B и нескольких операций. Начинают построение с определения строк. Используя формулу 2n+1 для рассматриваемого примера можно установить, что их число будет: x = 22 + 1 = 5.

Теперь следует определить число столбцов. Для этого используется формула, в которой учитывается количество переменных и операций. Последние можно просто посчитать, сложив количество разных знаков, используемых в записи формулы. Но правильней сначала расставить порядок операций, а затем посчитать. Согласно порядку действия над операциями их нумерацию можно представить в следующей очерёдности:

  1. Импликация в первой скобке.
  2. Инверсия во второй скобке переменной A.
  3. Отрицание во второй скобке неизвестной B.
  4. Сложение во втором члене.
  5. Конъюнкция.

В итоге получится, что столбцов будет: Y = 2 + 5 = 7. Теперь нужно построить таблицу 7Х5. В шапку первого и второго столбца вписывают переменные, а затем операции над ними. Затем в строках, соответствующих A и B нужно записать всё, что с ними может произойти. В итоге останется только правильно посчитать последний столбец.

Для этого нужно использовать законы. Необходимо выполнить логическое умножение значений в скобках. Первой и второй строчке будет соответствовать операция произведения один на один, что в ответе даст единицу. Третьей и четвёртой — ноль на один, что в итоге даст ноль. Последний столбец является главным для рассматриваемой логической функции. По нему можно узнать значение логической функции для любых форм переменных A и B.

Это довольно простая задача, содержащая всего две переменных. Но в реальности, например, в программировании, их может быть намного больше. Решать такие задания методом перебора проблематично. Поэтому при решении сложных примеров функцию вначале пытаются упростить.

Например, заданно выражение (x + y + z) * (x + y). По сути, оно записано в совершенно нормальной конъюнктивной форме. Но для приведения его к этому виду нужно, чтобы во втором выражении стояла z. Для того чтобы её добавить необходимо обратить внимание на то, что внутри скобок стоит логическое сложение. Поэтому дописав к нему ноль, результат не изменится. Добавить ноль через z можно, как ноль умножить на НЕ z. В итоге получится выражение (x + y + z) * (x + y + z + z), для которого, используя алгоритм составить таблицу уже не так и сложно.

Вычисления онлайн

В интернете есть сервисы, автоматически строящие таблицы истинности. Такие сайты предлагают свои услуги бесплатно и доступны даже тем, кто слабо ориентируется в теме. С их помощью можно находить таблицы для довольно сложных выражений, решение которых требует скрупулёзности в расчёте. В основе онлайн-вычислений заложены принципы логических законов, поэтому за достоверность результата можно не переживать. Тем более расчёт занимает совсем небольшое количество времени.

Для того чтобы воспользоваться сайтами-калькуляторами пользователю необходимо знать обозначение операций, иметь подключение к интернету и установленный веб-обозреватель, поддерживающий Flash-технологию. Регистрацию, указание личных данных сервисы, предлагающие такого рода услуги, не требуют.

Из различных порталов можно отметить три наиболее популярных калькулятора:

  1. Allcalc.
  2. Programforyou.
  3. Uchim.

Эти сайты имеют интуитивно понятный интерфейс и что довольно полезно, на своих страницах содержат краткую теорию, используемую для составления таблиц истинности и даже примеры решений.

Источник

Читайте также:  Мильон терзаний таблица вопросы цитаты
Adblock
detector