Меню

Как пользоваться таблицей растворимости для составления уравнений

Как пользоваться таблицей растворимости для составления уравнений

Как составить формулу вещества

Вам необходимо составить химическую формулу, но вы абсолютно забыли основы школьной химии? Поверьте, не стоит переживать. На сегодняшний день известно более 20 миллионов химических соединений, и, поверьте, никто не держит их формулы у себя в голове. Достаточно знать простой принцип их написания. Статьи по теме:

  • периодическая таблица Менделеева, таблица растворимости солей

Инструкция
1 Задача составления химической формулы вещества сводится к созданию электронейтральной системы. Поэтому вам необходимо будет подобрать некоторое число электронов для каждого элемента соединения так, чтобы оно было уравновешено.Однако перед тем, как это сделать, вам следует вспомнить некоторые теоретические основы. Любой элемент периодической таблицы Менделеева обладает своей валентностью (степенью окисления), то есть способностью отдавать или принять некоторое количество электронов, с учетом своей валентности, не более восьми электронов. Валентность каждого химического элемента соответствует номеру группы в периодической таблице (верхняя строка, написанная римскими цифрами). Стоит заметить, что все элементы таблицы Менделеева можно условно разделить на два класса: окислители и восстановители. Первые, как правило, только забирают электроны, вторые – отдают.
2 Для составления химической формулы также необходимо знать, с каким типом соединений вы имеете дело. Их можно разделить на следующие группы:1. Бинарные;2. Основания, соли, кислоты.
3 Для составления формулы бинарных соединений вам потребуется таблица Менделеева, а для остальных групп – таблица растворимости солей. В формулах бинарных соединений на первом месте принято писать металл или элемент с меньшей валентностью, на втором – неметалл или элемент с большей валентностью. Допустим, необходимо составить формулу оксида тантала. Запишите рядом обозначения этих элементов и проставьте их валентность: Та5О6. Тантал, соответственно, способен отдать 3 электрона, а кислород – принять два, то есть: Та3+О2-. Таким образом, для создания уравновешенной системы методом «крест-на-крест» (меняя индексы химических элементов местами и отбрасывая их знаки) вы получаете следующую формулу: Та2О3.
4 Для составления формул оснований, солей и кислот необходимо воспользоваться таблицей растворимости солей. В верхней ее строке указаны катионы – вещества, отдающие электроны, а в левом столбце – анионы, то есть соединения, способные принимать электроны. Пользуясь таблицей растворимости солей, можно получить следующую формулу для сульфата алюминия: Al3+ SO42-. Используя принцип «крест-на-крест», окончательная формула вещества будет иметь вид: Аl2(SO4)3.Как видите, алгоритм составления химических формул очень прост. Он остается неизменным для любых других соединений. Статьи по теме:

Источник



Растворимость

Растворимость (Р, χ или k s) – это характеристика насыщенного раствора, которая показывает, какая масса растворенного вещества может максимально раствориться в 100 г растворителя. Размерность растворимости — г/ 100 г воды. Поскольку мы определяем массу соли, которая приходится на 100 г воды, в формулу растворимости добавляем множитель 100:

здесь m р.в . – масса растворенного вещества, г

Иногда используют обозначение коэффициент растворимости k S.

Задачи на растворимость, как правило, вызывают сложности, так как эта физическая величина для школьников не очень привычна.

Растворимость веществ в различных растворителях меняется в широких пределах.

В таблице приведена растворимость некоторых веществ в воде при 20 o С:

Растворимость, г на 100 г H 2O

Растворимость, г на 100 г H 2O

От чего же зависит растворимость веществ? От ряда факторов: от природы растворенного вещества и растворителя, от температуры и давления. В справочных таблицах предлагается вещества делят на хорошо растворимые, малорастворимые и нерастворимые. Такое деление очень условное, поскольку абсолютно нерастворимых веществ нет. Даже серебро и золото растворимы в воде, однако их растворимость настолько мала, что можно пренебречь ей.

Зависимость растворимости от природы растворенного вещества и растворителя*

Растворимость твердых веществ в жидкостях зависит от структуры твердого вещества (от типа кристаллической решетки твердого вещества). Например, вещества с металлическими кристаллическими решетками (железо, медь и др.) очень мало растворимы в воде. Вещества с ионной кристаллической решеткой, как правило, хорошо растворимы в воде.

Есть замечательное правило: “ подобное хорошо растворяется в подобном”. Вещества с ионным или полярным типом связи хорошо растворяются в полярных растворителях. Например, соли хорошо растворимы в воде. В то же время неполярные вещества, как правило, хорошо растворяются в неполярных растворителях.

Большинство солей щелочных металлов и аммония хорошо растворимы в воде. Хорошо растворимы почти все нитраты, нитриты и многие галогениды (кроме галогенидов серебра, ртути, свинца и таллия) и сульфаты (кроме сульфатов щелочноземельных металлов, серебра и свинца). Для переходных металлов характерна небольшая растворимость их сульфидов, фосфатов, карбонатов и некоторых других солей.

Растворимость газов в жидкостях также зависит от их природы. Например, в 100 объемах воды при 20 o С растворяется 2 объема водорода, 3 объема кислорода. В тех же условиях в 1 объеме Н 2О растворяется 700 объемов аммиака.

Влияние температуры на растворимость газов, твердых веществ и жидкостей*

Растворение газов в воде вследствие гидратации молекул растворяемого газа сопровождается выделением теплоты. Поэтому при повышении температуры растворимость газов понижается.

Температура различным образом влияет на растворимость твердых веществ в воде. В большинстве случаев растворимость твердых веществ возрастает с повышением температуры. Например, растворимость нитрата натрия NaNO 3 и нитрата калия КNO 3 при нагревании увеличивается (процесс растворения протекает с поглощением теплоты). Растворимость NaCl при увеличении температуры возрастает незначительно, что связано с почти нулевым тепловым эффектом растворения поваренной соли.

Влияние давления на растворимость газов, твердых веществ и жидкостей*

На растворимость твердых и жидких веществ в жидкостях давление практически не оказывает влияния, так как изменение объема при растворении невелико. При растворении газообразных веществ в жидкости происходит уменьшение объема системы, поэтому повышение давления приводит к увеличению растворимости газов. В общем виде зависимость растворимости газов от давления подчиняется закону У. Генри (Англия, 1803 г.): растворимость газа при постоянной температуре прямо пропорциональна его давлению над жидкостью.

Читайте также:  Назначение структуры электронной таблицы excel

Закон Генри справедлив лишь при небольших давлениях для газов, растворимость которых сравнительно невелика и при условии отсутствия химического взаимодействия между молекулами растворяемого газа и растворителем.

Влияние посторонних веществ на растворимость*

В присутствии в воде других веществ (солей, кислот и щелочей) растворимость газов уменьшается. Растворимость газообразного хлора в насыщенном водном растворе поваренной соли в 10 раз меньше. Чем в чистой воде.

Эффект понижения растворимости в присутствии солей называется высаливанием. Понижение растворимости обусловлено гидратацией солей, что вызывает уменьшение числа свободных молекул воды. Молекулы воды, связанные с ионами электролита, уже не являются растворителем для других веществ.

Примеры задач на растворимость

Задача 1. Массовая доля вещества в насыщенном растворе равна 24% при некоторой температуре. Определите коэффициент растворимости этого вещества при данной температуре.

Для определения растворимости вещества примем массу раствора равной 100 г. Тогда масса соли равна:

Масса воды равна:

m воды = m р-ра – m р.в. = 100 — 24 = 76 г

χ = m р.в./m р-ля⋅100 = 24/76⋅100 = 31,6 г вещества на 100 г воды.

Еще несколько аналогичных задач:

2. Массовая доля соли в насыщенном растворе при некоторой температуре равна 28,5%. Определите коэффициент растворимости вещества при этой температуре.

3. Определите коэффициент растворимости нитрата калия при некоторой температуре, если массовая доля соли при этой температуре равна 0,48.

4. Какая масса воды и соли потребуется для приготовления 500г насыщенного при некоторой температуре раствора нитрата калия, если его коэффициент растворимости при этой температуре равен 63,9г соли в 100г воды?

5. Коэффициент растворимости хлорида натрия при некоторой температуре составляет 36г соли в 100г воды. Определите молярную концентрацию насыщенного раствора этой соли, если плотность раствора 1,2 г/мл.

6. Какая масса соли и 5% раствора её потребуется для приготовления 450г насыщенного при некоторой температуре раствора сульфата калия, если его коэффициент растворимости при этой температуре равен 439г/1000г воды?

7. Какая масса нитрата бария выделится из раствора, насыщенного при 100ºС и охлаждённого до 0ºС, если во взятом растворе было 150мл воды? Коэффициент растворимости нитрата бария при температурах 0ºС и 100ºС равен соответственно 50г и 342г в 100г воды.

8. Коэффициент растворимости хлорида калия при 90ºС равен 500г/л воды. Сколько граммов этого вещества можно растворить в 500г воды при 90ºС и какова его массовая доля в насыщенном растворе при этой температуре?

9. В 500г воды растворено при нагревании 300г хлорида аммония. Какая масса хлорида аммония выделится из раствора при его охлаждении до 50ºС, если коэффициент растворимости соли при этой температуре равен 50г/л воды?

Источник

Как решать химические уравнения — схемы и примеры решения для разных реакций

Основные термины и понятия

Составление уравнений химических реакций невозможно без знания определённых обозначений, показывающих, как проходит реакция. Объединение атомов, имеющих одинаковый ядерный заряд, называют химическим элементом. Ядро атома состоит из протонов и нейтронов. Первые совпадают с числом атомного номера элемента, а значение вторых может варьироваться. Простейшими веществами называют элементы, состоящие из однотипных атомов.

Любой химический элемент описывается с помощью символов, условно обозначающих структуру веществ. Формулы являются неотъемлемой частью языка науки. Именно на их основе составляют уравнения и схемы. По своей сути они отражают количественный и качественный состав элементов. Например, запись HNO3 сообщает, что в соединении содержится одна молекула азотной кислоты, а оно само состоит из водорода, азота и кислорода. При этом в состав одного моля азотной кислоты входит по одному атому водорода и азота и 3 кислорода.

Символика элементов, условное обозначение, представляет собой химический язык. В значке содержится информация о названии, массовом числе и порядковом номере. Международное обозначение принято, согласно периодической таблице Менделеева, разработанной в начале 1870 года.

Взаимодействующие между собой вещества называются реагентами, а образующиеся в процессе реакции — продуктами. Составление и решение химических уравнений фактически сводится к определению результатов реакций, поэтому просто знать формулы веществ мало, нужно ещё уметь подбирать коэффициенты. Располагаются они перед формулой и указывают на количество молекул или атомов, принимающих участие в процессе. С правой стороны от химического вещества ставится индекс, указывающий место элемента в системе.

Записывают уравнения в виде цепочки, в которой указываются все стадии превращения вещества начиная с левой части. Вначале пишут формулы элементов в исходном состоянии, а затем последовательно их преобразование.

Виды химических реакций

Химические явления характеризуются тем, что из двух и более элементов образуются новые вещества. Уравнения описывают эти процессы. Впервые с объяснениями протекания реакций знакомят в восьмом классе средней образовательной школы на уроках неорганической химии. Ученикам демонстрируют опыты, в которых явно наблюдаются различия в протекании реакций.

Всего существует 4 типа химического взаимодействия веществ:

  1. Соединение. В реакцию могут вступать 2 простых вещества: металл и неметалл или неметалл и неметалл. Например, алюминий с серой образуют сульфид алюминия. Кислород, взаимодействуя с водородом, превращается в воду. Объединятся могут 2 оксида с растворимым основанием, как оксид кальция с водой: CaO + H2O = Ca (OH)2 или основной оксид с кислотным: CaO + SO3 = CaSO4.
  2. Разложение. Это процесс обратный реакции соединения: было одно вещество, а стало несколько. Например, при пропускании электрического тока через воду получается водород и кислород, а при нагревании известняка 2 оксида: CaCO3 = CaO + CO2.
  3. Замещение. В реакцию вступают 2 элемента. Один из них простой, а второй сложный. В итоге образуются 2 новых соединения, при котором атом простого вещества заменяет сложный, как бы вытесняя его. Условие протекания процесса: простое вещество должно быть более активным, чем сложное. Например, Zn + 2HCl = ZnCl2 + H2. Величину активности можно узнать из таблицы ряда электрохимических напряжений.
  4. Обмен. В этом случае между собой реагируют 2 сложных элемента, обменивающиеся своими составными частями. Условием осуществления такого типа реакции является обязательное образование воды, газа или осадка. Например, CuO + 2HCl = CuCl2 + H2O. Чтобы узнать, смогут ли вещества прореагировать, используют таблицу растворимости.
Читайте также:  Таблицы с открывающимися ячейками

Основными признаками химических реакций является изменение цвета, выделение газа или образование осадка. Различают их по числу веществ, вступивших в реакцию и образовавшихся продуктов. Правильное определение типа реакции особо важно при составлении химических уравнений, а также определения свойств и возможностей веществ.

Окислительно-восстановительный процесс

Составление большинства реакций сводится к подбору коэффициентов. Но при этом могут возникнуть трудности с установлением равновесия, согласно закону сохранения массы веществ. Чаще всего такая ситуация возникает при решении заданий, связанных с расстановкой количества атомов в уравнениях окислительно-восстановительных процессов.

Под ними принято понимать превращения, протекающие с изменением степени окисления элементов. При окислении происходит процесс передачи атомом электронов, сопровождающийся приобретением им положительного заряда или ионом, после чего он становится нейтральным. При этом также происходит процесс восстановления, связанный с присоединением элементарных частиц атомом.

Для составления уравнений необходимо определить восстановитель, окислитель и число участвующих в реакции электронов. Коэффициенты же подбирают с помощью метода электронно-ионного баланса (полуреакций). Его суть состоит в установлении равенства путём уравнивания количества электронов, отдаваемых одним элементом и принимаемым другим.

Классический алгоритм

В основе решения задач этим методом — закон сохранения массы. Согласно ему, совокупная масса элементов до реакции и после остаётся неизменной. Другими словами, происходит перегруппировка частиц. Если рассматривать решение химического уравнения поэтапно, оно будет состоять из трёх шагов:

  1. Написания формул элементов, вступающих в реакцию с левой стороны.
  2. Указания справа формулы образующихся веществ.
  3. Уравнивания числа атомов с добавлением коэффициентов.

Перед тем как переходить к сложным соединениям, лучше всего потренироваться на простых. Например, нужно составить уравнение, описывающее взаимодействие двух сложных веществ: гидроксида натрия и серной кислоты. При таком соединении образуется сульфат натрия и вода.

Согласно алгоритму, в левой части уравнения необходимо записать реагенты, а в правой продукты реакции: NaOH + H2SO 4 → Na 2SO4 + H2O. Теперь следует уравнять коэффициенты. Начинают с первого элемента. В примере это натрий. В правой части содержится 2 его атома, а в левой один, поэтому необходимо возле реагента поставить цифру 2. Затем нужно уровнять водород. В результате получится выражение: 2 NaOH + H2SO 4 → Na2 SO4 +2H2O.

Ещё одним наглядным примером является процесс реакции тринитротолуола с кислородом. При их взаимодействии образуется: C7H5N3O6 + O2 → CO2 + H2O + N2. Исходя из того, что слева находится нечётное число атомов H и N, а справа чётное, нужно их уравнять: 2C7H5N3O6 + O2 → CO2 + H2O + N2.

Теперь становится понятным, что 14 и 10 атомов углерода и водорода должны образовать 14 долей диоксида и 5 молекул воды. При этом 6 атомов азота превратятся в 3. Итоговое уравнение будет выглядеть как 2C7H5N3O6 + 10,5O2 → 14CO2 + 5H2O + 3N2.

Перед тем как начинать тренировку по составлению уравнений, следует научиться расставлять валентность. Это параметр, равный числу соединившихся атомов каждого элемента. Фактически это способность к соединению. Например, в формуле NH3 валентность атома азота равна 3, а водорода 1.

Решение методом полуреакций

Алгоритм для решения примеров химических уравнений проще рассмотреть на конкретном задании. Пускай необходимо описать процесс окисления пирита азотной кислоты с малой концентрацией: FeS2 + HNO3. Решать этот пример необходимо в следующей последовательности:

  1. Определить продукты реакции. Так как кислота является сильным окислителем, сера получит максимальную степень оксидации S6+, а железо Fe3+. HNO3 может восстановиться до одного из двух состояний NO2 или NO.
  2. Исходя из состава ионов и правила, что вещества, переходящие в газовую форму или плохо растворимые, записываются в молекулярном виде, верным будет записать: FeS2 — Fe3+ + 2SO2−4. Гидролизом можно пренебречь.
  3. В записи уравнивают кислород. Для этого в левую часть добавляют 8 молекул воды, а в правую 16 ионов водорода: FeS2 + 8H20 — Fe3+ + 2SO2−4 + 16H+. Так как заряда в левой части нет, а в правой он равный +15, то серное железо должно будет отдать 15 электронов. Значит, уравнение примет вид: FeS2 + 8H20 — 15e → Fe3+ + 2SO2−4 + 16H+.
  4. Теперь переходят к реакции восстановления нитрата иона: NO-3 →NO. Для её составления нужно отнять у оксида азота 2 атома кислорода. Делают это путём прибавления к левой части 4 ионов водорода, а правой — 2 молекул воды. В итоге получится: NO-3 + 4H+ → NO + 2H2O.
  5. Полученную формулу уравнивают добавлением к левой части 3 электронов: NO-3 + 4H+ 3e → NO + 2H2O.
  6. Объединяют найденные выражения и записывают результат: FeS2 + 8H20 + 5NO-3 + 20H+ → Fe3+ + 2SO2−4 + 16H+ + 5NO + 10H2O.

Уравнение можно сократить на 16H + и 8H2O. В итоге получится сокращённое выражение окислительно-восстановительной реакции: FeS2 + 5NO — 3 + 4 H + = Fe3 + + 2SO 2- 4 + 5NO + 2H2O.

  • Добавив в обе части нужное количество ионов, записывают молекулярное уравнение: FeS2 + 8HNO3 = Fe (NO 3) 3 + 2H2SO4 + 5NO + 2H2O.
  • Такой алгоритм считается классическим, но для упрощения понимания лучше использовать способ электронного баланса. Процесс восстановления переписывают как N5+ + 3e → N2+. Степень же окисления составить сложнее. Сере нужно приписать степень 2+ и учесть, что на 1 атом железа приходится 2 атома серы: FeS2 → Fe3++ 2S6+. Запись общего баланса будет выглядеть: FeS2 + 5N5+ = Fe3+ + 2S6+ + 5N2+.

    Пять молекул потратятся на окисление серного железа, а ещё 3 на образование Fe (NO3)3. После уравнения двух сторон запись реакции примет вид, аналогичный полученному с использованием предыдущего метода.

    Использование онлайн-расчёта

    Простые уравнения решать самостоятельно довольно просто. Но состоящие из сложных веществ могут вызвать трудности даже у опытных химиков. Чтобы получить точную формулу и не подбирать вручную коэффициенты, можно воспользоваться онлайн-калькуляторами. При этом их использовать сможет даже пользователь, не особо разбирающийся в науке.

    Читайте также:  Распределение случайной величины задано таблицей вычислить распределение

    Чтобы расстановка коэффициентов в химических уравнениях онлайн происходила автоматически, нужно лишь подключение к интернету и исходные данные. Система самостоятельно вычислит продукты реакции и уравняет обе стороны формулы. Интересной особенностью таких сайтов является не только быстрый и правильный расчёт, но и описание правил с алгоритмами, по которому выполняются действия.

    После загрузки калькулятора в веб-обозревателе единственное, что требуется от пользователя — правильно ввести реагенты в специальные формы латинскими буквами и нажать кнопку «Уравнять». Иногда возникает ситуация, когда запись сделана верно, но коэффициенты не расставляются. Это происходит, если суммы в уравнении могут быть подсчитаны разными способами. Характерно это для реакций окисления. В таком случае нужно заменить фрагменты молекул на любой произвольный символ. Таким способом можно не только рассчитать непонятное уравнение, но и выполнить проверку своих вычислений.

    Источник

    Произведение растворимости в химических реакциях — правило и формула вычисления

    Содержание

    1. Определение и суть
    2. Константа произведения
    3. Правило активности ионов
    4. Экспериментальное подтверждение
    5. Примеры решения задач

    Для описания гетерогенных равновесий в среде насыщенных растворов, состоящих из слаборастворимых сильных электролитов и образованных ими твёрдых фаз, используют понятие произведение растворимости. Эта величина постоянная и записывается для условий, при которых температура и давление не изменяется. Основным параметром характеристики является константа равновесия, определяющая растворимость при комнатной температуре.

    Определение и суть

    При определённой температуре, зависящей от вида раствора электролита между кристаллами и его содержанием, устанавливается равновесие. Оно является динамическим, так как скорость прямой и обратной реакции совпадают, то есть время растворения и кристаллизации равны. Главным условием для наступления такого процесса является содержание в жидкости малорастворимого электролита.

    Протекающая реакция характеризуется двумя константами:

    Равновесием. Величиной, показывающей зависимость между эффективной концентрацией компонентов (учитывает отклонение существующей системы от идеального состояния) и элементов, находящихся в состоянии химического равновесия (реакция в которой скорости равны). Для идеального раствора она находится через молярность: K = ПС v i?, где: Ci — молярность, Vi — скорость взаимодействия. Скоростью. Коэффициентом пропорциональности, определяющим соотношение масс, вступающих в реакцию веществ, и скоростью взаимодействия зависящей от концентрации продуктов. Так как соединение в химии можно записать в виде V1A1 + V2A2 + V3A3 → B, то константа будет равна: V = K [ A1] v1 [ A2] v2 [ A3] v3 , где: k — константа, [A1] — концентрация продуктов, V — стехиометрические коэффициенты. Константа зависит от температуры и природы вступающих во взаимодействие веществ.

    Общей формулой произведения растворимости в химии является выражение: ПР = [Ky]x * [Ax-]y. Таким образом, определяется взаимосвязь между постоянной растворимости и равновесия. То есть это гетерогенное равновесие между кристаллами Кх Ау и раствором.

    Любое соединение, образующее раствор, может быть насыщенным или ненасыщенным. Первым называют взаимодействие при определённой температуре, когда можно растворить ещё какую-то часть продукта, а вторым — раствор, в котором скорости реакции и осаждения равны. Существует и третий вид раствора — перенасыщенный. Это состояние реакции, при которой образуется осадок.

    Эти три состояния можно описать формулами:

    • ПР АВ = [A+]*[B-] — насыщенное соединение;
    • ПР АВ > [A+]*[B + ] — ненасыщенный раствор;
    • ПР АВ

    Константа произведения

    Это термин, определяющий соотношение между термодинамическим равновесием исходных продуктов и элементов, находящихся в химическом равновесии. Для общего случая формула имеет вид: Σ ViAi ← → Σ VtAt, где: vi, vt — стехиометрические числа исходных продуктов и реакции, активность которых определяется ai, at. Отсюда константа равновесия равна отношению операторов произведения: Ka = П a Vt At / П aVi Ai. Это выражение, по сути, описывает закон действующих масс в математической форме.

    Константа связана и с перераспределением энергии Гиббса. Эта зависимость объединяет температуру, давление и газовую постоянную. Так как свободная энергия — это мощность, равная изменению системы внутри неё, то потенциал Гиббса характеризуется полной энергией, которая используется для химического превращения и позволяет определить возможность прохождения реакции. Находится она по формуле: G = U + PV — TS. Изменение мощности можно описать выражением: ΔG = R * T * LtKa.

    Зависимость константы от температуры и давления описывается соотношением: (ΔltKa / ΔT) p = ΔH 0 / RT 2 и (ΔltKa / ΔP) t = ΔV 0 / Rt 2 . В формуле ΔH 0 и ΔV 0 используются определённые изменения объёма и тепловой функции. Количественное значение постоянной зависит от выбора установленного состояния для каждого вещества, участвующего в реакции. Для ненасыщенных растворов в качестве такого состояния принимают гипотетическое при единичной концентрации. Поэтому при максимальном разбавлении значение константы будет зависеть только от природы растворителя.

    Если во взаимодействии принимают участие как твёрдые, так и жидкие компоненты, то такое состояние называют стандартным. Активность таких веществ равна единице и не входит в уравнение константы. Для газов же учитывают летучесть. В этом случае постоянная обозначается Kf. Если газ считать идеальным, то смесь компонентов равна парциальному давлению. Выразив через него константу равновесия, можно получить формулу молярной концентрации: Cj = (pj / RT) ΔV . Две константы равновесия между собой связываются отношением: Kf = Ka/(RT).

    Определение влияния константы равновесия и решение уравнений электронного баланса даёт возможность найти равновесные составы уравнений, что важно для описания термодинамических процессов.

    Источник

    Adblock
    detector