Меню

Элементы и параметры цепи переменного тока таблица

Цепи переменного тока. Определение и основные характеристики.

Всем доброго времени суток! В прошлой статье я рассказал о переменном напряжении и его параметрах. Данная статья, по сути, является продолжение предыдущей и затронет вопросы цепей переменного напряжения и тока, а также их воздействие на сопротивление, ёмкость и индуктивность в различных сочетаниях. Начнём с простейших цепей с синусоидальным переменным напряжением

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Сопротивление в цепи при переменном напряжении

Цепи переменного напряжения с сопротивлением является самыми простыми и наиболее часто встречающимися, поэтому начнём с них.

Переменное синусоидальное напряжение и ток в сопротивлении

Переменное синусоидальное напряжение и ток в сопротивлении.

Допустим, что на сопротивление R подали переменное напряжение u, тогда, согласно с законом Ома, через данное сопротивление потечёт электрический ток i

где Um – амплитудное значение переменного напряжения,

Im – амплитудное значение переменного тока,

ω – угловая частота,

φ – начальная фаза

Таким образом, действующее I и среднее значение Icp переменного тока будут определяться следующими выражениями

Так как, напряжение и ток, в цепи с сопротивлением имеют одинаковую начальную фазу, то есть, происходит совпадение фаз и достижение амплитудных значений напряжения Um и тока Im происходит одновременно.

Выражение «совпадение фаз» связанно с понятием фазового сдвига ψ, которое определяет разность начальных фаз двух синусоид одинаковой частоты. Следовательно, фазовый сдвиг между напряжением и током при активном сопротивлении будет равен нулю

где φu – начальная фаза напряжения,

φi – начальная фаза тока.

Для оценки энергетических характеристик ввели понятие мощности, в цепях переменного напряжения существует несколько мощностных характеристик. Одной из них является мгновенная мощность Рm, определяемая, как произведение мгновенных значений напряжения и тока

где Um – амплитудное значение переменного напряжения,

Im – амплитудное значение переменного тока,

U – действующее значение переменного напряжения,

I – действующее значение переменного тока.

Таким образом, мгновенная мощность Рm изменяется с удвоенной частотой по сравнению с частотой напряжения и тока и колеблется в пределах от 0 до 2UI.

Еще одной энергетической характеристикой является среднее значение мощности за период Р или активная мощность, которая определяется следующим выражением

где Рm – мгновенная мощность,

U – действующее значение переменного напряжения,

I – действующее значение переменного тока.

Параметры электрических цепей

Любая электрическая цепь и каждый ее элемент в отдельности обладают тремя параметрами: сопротивлением R, индуктивностью L и емкостью С. Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую. Количество тепловой энергии , выделяющееся в сопротивлении R при протекании тока i в течение времени t, определяется соотношением (1.3) и измеряется в джоулях (Дж):

Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):

R = U / I

Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладает любой проводник с током или система проводов. Количество этой энергии WM , накопленной в цепи, зависит от величины тока i и измеряется в джоулях (Дж):

Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет. Величина индуктивности определяется как отношение потокосцепления цепи ψ к току i и измеряется в генри (Гн)

Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: Ψ = Ф w.

Емкость С характеризует способность цепи накапливать энергию электрического поля. Такой способностью обладают любые два провода, разделенные диэлектриком, например провод, висящий над землей, любые два провода линии передачи. Количество энергии электрического поля W Э , накопленной в цепи с емкостью С , зависит от величины напряжения между проводами и измеряется в джоулях (Дж):

Эта энергия не может преобразовываться в тепловую, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет. Величина емкости С определяется как отношение электрического заряда q одного из проводов к напряжению u между ними и измеряется в фарадах (Ф):

В табл.1.2 представлены конструкции некоторых простейших электротехнических устройств и формулы для расчета их параметров. В этой табл.: γ − удельная электрическая проводимость провода (1/Ом⋅м); μ a − абсолютная магнитная проницаемость стали (Гн/м); ε a абсолютная диэлектрическая проницаемость диэлектрика (Ф/м); l −длина провода, средняя длина стального сердечника, расстояние между пластинами конденсатора (м); S – площадь поперечного сечения провода, площадь поперечного сечения стального сердечника, площадь пластины конденсатора (м 2 ); w – число витков обмотки; Ф – магнитный поток в сердечнике, измеряемый в веберах (Вб).

Структура

Электрическая цепь — совокупность устройств и элементов, имеющая целью доставить ток потребителю и преобразовать его в другой вид энергии: тепло, свет или механическую работу.

Фото 5

В цепи различают три части:

  1. источник питания;
  2. транслирующая часть: провода, выключатели, трансформаторы, стабилизаторы и пр. Все то, что используется для передачи, трансформации электрической энергии и поддержания ее качества на должном уровне;
  3. потребители: лампы, электродвигатели, нагреватели и пр.

Источник питания — генератор, аккумулятор, солнечную батарею — называют внутренней частью цепи, остальные компоненты — внешней. Также источник называют активным элементом, прочие — пассивными. Электрическая цепь функционирует только в замкнутом виде, то есть в непрерывном. При размыкании сила тока в ней падает до нуля, хотя участок со стороны генератора или батареи остается под напряжением.

По числу выводов компоненты цепи делятся на два вида:

  1. двухполюсные: имеют одну пару выводов. Пример — диод, резистор;
  2. многополюсные: имеют более двух выводов. Пример — трансформатор (4 вывода).

Процессы в электрической цепи описываются законами Ома и Кирхгофа.

Компоненты в ней соединяются тремя способами:

  • последовательно;
  • параллельно;
  • комбинированным способом.

Применяют такие термины:

  1. ветвь. Участок из последовательно соединенных элементов в параллельной или комбинированной цепи. Законы электротехники гласят: сила тока в пределах ветви одинакова, независимо от величины сопротивления составляющих ее компонентов, а общее сопротивление ветви равно сумме сопротивлений всех ее компонентов. В цепи только с последовательным соединением компонентов, ветвей не выделяют, ее так и называют — неразветвленная цепь;
  2. узел. Место, где цепь разветвляется. Принято считать, что сумма токов, сходящихся в узле, равна сумме токов, исходящих из него. Падение напряжения для параллельных ветвей между точками разветвления и схождения — одинаково;
  3. контур. Совокупность ветвей, представляющая собой замкнутый путь для тока.

По функциональности отдельные части в структуре электрической цепи делятся на такие виды:

Фото 6

  1. силовая. Включает в себя элементы, генерирующие, проводящие, преобразующие и потребляющие электроэнергию;
  2. вспомогательная. Различные дополнительные устройства, не относящиеся к силовой части. Например, установки компенсации реактивной мощности, предохранители;
  3. измерительная. Относящиеся к этой части приборы позволяют отследить параметры сети и подключенных к ней устройств;
  4. управляющая. Оборудование для регулировки параметров устройств либо их включения/отключения.;
  5. сигнализирующая. Сообщает путем включения сигнальных устройств об изменениях в параметрах сети.

По сложности электрические цепи делят на:

  • простейшие: источник, подключенный к потребителю;
  • простые: содержат один контур;
  • сложные: насчитывают несколько контуров.

В сложных цепях выделяют:

  • многоконтурные;
  • многоузловые;
  • плоскостные;
  • объемные.

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным

Источник



Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.

Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Читайте также:  Знаменитые ученые европейского средневековья таблица 6 класс гдз

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.

Частота — величина, обратная периоду.

Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

— амплитуда;

— начальная фаза;

— угловая скорость вращения ротора генератора.

При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.

При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

— поворотный множитель;

— комплексная амплитуда напряжения;

— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости

Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать

— комплексная амплитуда тока; *

— сопряженная комплексная амплитуда тока.

Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением

-индуктивное сопротивленияе

Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.

В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то

-емкостное сопротивление.

Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование

и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.

Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.

При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.

Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении

В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.

Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.

Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.

Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.

С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.

Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;

a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

Источник

Основные свойства простейших цепей переменного тока

Всем доброго времени суток! В прошлой статье я рассказал о переменном напряжении и его параметрах. Данная статья, по сути, является продолжение предыдущей и затронет вопросы цепей переменного напряжения и тока, а также их воздействие на сопротивление, ёмкость и индуктивность в различных сочетаниях. Начнём с простейших цепей с синусоидальным переменным напряжением

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Сопротивление в цепи при переменном напряжении

Цепи переменного напряжения с сопротивлением является самыми простыми и наиболее часто встречающимися, поэтому начнём с них.

Переменное синусоидальное напряжение и ток в сопротивлении

Переменное синусоидальное напряжение и ток в сопротивлении.

Допустим, что на сопротивление R подали переменное напряжение u, тогда, согласно с законом Ома, через данное сопротивление потечёт электрический ток i

где Um – амплитудное значение переменного напряжения,

Читайте также:  Педагогическая деятельность как система таблица

Im – амплитудное значение переменного тока,

ω – угловая частота,

φ – начальная фаза

Таким образом, действующее I и среднее значение Icp переменного тока будут определяться следующими выражениями

Так как, напряжение и ток, в цепи с сопротивлением имеют одинаковую начальную фазу, то есть, происходит совпадение фаз и достижение амплитудных значений напряжения Um и тока Im происходит одновременно.

Выражение «совпадение фаз» связанно с понятием фазового сдвига ψ, которое определяет разность начальных фаз двух синусоид одинаковой частоты. Следовательно, фазовый сдвиг между напряжением и током при активном сопротивлении будет равен нулю

где φu – начальная фаза напряжения,

φi – начальная фаза тока.

Для оценки энергетических характеристик ввели понятие мощности, в цепях переменного напряжения существует несколько мощностных характеристик. Одной из них является мгновенная мощность Рm, определяемая, как произведение мгновенных значений напряжения и тока

где Um – амплитудное значение переменного напряжения,

Im – амплитудное значение переменного тока,

U – действующее значение переменного напряжения,

I – действующее значение переменного тока.

Таким образом, мгновенная мощность Рm изменяется с удвоенной частотой по сравнению с частотой напряжения и тока и колеблется в пределах от 0 до 2UI.

Еще одной энергетической характеристикой является среднее значение мощности за период Р или активная мощность, которая определяется следующим выражением

где Рm – мгновенная мощность,

U – действующее значение переменного напряжения,

I – действующее значение переменного тока.

Электрические цепи переменного тока

В состав цепей переменного тока входят резистивные элементы, катушки индуктивности, конденсаторы и элементы, соединенные магнитной или емкостной связью с другими цепями.

В резистивных элементах электрическая энергия пре­образуется в другие виды энергии. Резистивный элемент характеризуется значением сопротивления и обладает не­которой индуктивностью и емкостью, влиянием которых в ряде случаев можно пренебречь (например, при низкой частоте).

Индуктивный элемент кроме индуктивности обладает также сопротивлением, которым, как правило, пренебречь нельзя. Иногда учитывается и влияние емкости.

В емкостном элементе имеются некоторые потери энер­гии, но они относительно невелики, и поэтому их можно не учитывать.

Процессы в цепях переменного тока отличаются от процессов в цепях постоянного тока, токи и напряжения которых неизменны. При неизменных токах в цепи не изменяются электрические и магнитные поля, связанные с цепью. В цепях переменного тока при изменениях напряжений и токов изменяются магнитные и электрические поля, связанные с цепью. При изменениях магнитных полей возникают ЭДС самоиндукции и взаимоиндукции, а при изменениях электрических полей в цепи протекают зарядные и разрядные токи.

В цепях переменного тока, как и постоянного, пока­зываются условные положительные направления ЭДС, напряжений и токов.

Синусоидальные переменные величины можно графи­чески изображать при помощи синусоид или вращающих­ся векторов. Соотношение между отдельными электриче­скими величинами, выраженное графически в форме си­нусоид, называется синусоидальной диаграммой. В этом случае ординаты синусоиды в определенном масштабе представляют собой мгновенные значения величины (ток, напряжение, ЭДС), а абсциссы — промежутки времени от начала отсчета.

Соотношение между отдельными электрическими вели­чинами (ток, напряжение, ЭДС) одной частоты, выра­женное графически в форме векторов, называется век­торной диаграммой.

Вектор — это отрезок, характеризующий численное значение и направление той или иной измеряемой величины. Длина вектора в масштабе выражает амплитуду синусоиды. Угол, образованный вектором и положительным направлением оси абсцисс, в начальный момент равен начальной фазе, а частота вращения вектора равна угловой частоте. Векторы одноименных величин изображаются в одном и том же масштабе, и их взаимное расположение не изменяется, так как они вращаются с одинаковой угловой скоростью.

Мгновенные значения синусоидальной величины выра­жаются проекциями вращающегося вектора на ось ор­динат. За положительное направление вращения векторов принято направление, обратное движению часовой стрелки.

Рисунок 4.4 — Положение витков якоря генератора (а); б) синусоидальная диаграмма ЭДС в витках 1 и 2; в) векторная диаграмма ЭДС в витках 1 и 2.

На одной векторной диаграмме изображаются лишь те электрические величины, которые имеют одну и ту же частоту. Один из векторов на диаграмме располагают произвольно, все прочие векторы по отношению к нему — под углами, определяемыми разностью (сдвигом) фаз.

Синусоидальная и векторная диаграммы ЭДС в витках 1 и 2, расположенных на якоре генератора (рисунок 4.4, а) и имеющих соответственно начальные фазы Ψ1 и Ψ2, показаны на рисунке 4.4, б, в.

Цепь с резистивным элементом, имеющим активное сопротивление

Активным называется сопротивление про­водника переменному току. Активное сопротивление все­гда больше омического за счет поверхностного эффекта, вытеснения тока к поверхностным слоям проводника. Явление поверхностного эффекта как бы уменьшает по­лезное сечение провода и, следовательно, увеличивает его сопротивление:

где k — коэффи­циент, учитывающий вытеснение тока (k = 1,02 — 1,1; меньшее значение соответствует большему сечению про­водника).

Активное сопротивление проводника зависит от часто­ты протекающего по нему переменного тока: чем больше частота тока, тем сильнее проявляется поверхностный эффект. При частоте тока 50 Гц для проводников из немагнитного материала активное сопротивление считает­ся равным омическому.

Приемниками электрической энергии, обладающими при промышленных частотах только активным сопротив­лением, являются реостаты, электрические лампы, нагре­вательные приборы, электроплиты и другие устройства, в которых осуществляется преобразование электрической энергии в тепловую.

На рисунке 4.5 а, показана цепь, имеющая только актив­ное сопротивление. К ней подведено переменное напря­жение:

По закону Ома мгновенное значение тока:

где Iм = Uм / r — амплитуда тока.

Действующие значения U и I меньше амплитудных в √2 раз, следовательно, действующий ток I = Ua / r, т. е. равен действующему напряжению, деленному на активное сопротивление.

В цепи с активным сопротивлением напряжение и ток совпадают по фазе (рисунок 4.5, б).

Характеристики переменного тока

Получение переменного тока и его основные характеристики
Переменного тока

Тема 3. Переменный ток. Электрические цепи

Ток, который протекает по цепи, меняя своё направление и величину, называется переменным. Непрерывно меняясь по величине, он создаёт переменное магнитное поле. Наибольшее распространение получил периодический синусоидальный переменный ток. Он меняется по закону кривой – «синусоиды», изменения эти повторяются через равные промежутки времени.

Параметры переменного тока:

· Период – время, в течение которого происходит полный цикл изменений тока, после чего изменения повторяются. Обозначается Т, единицы изменения – секунды.

· Частота – число периодов в одну секунду. Обозначается f, единицы изменения – Гц (одно колебание в секунду), КГц (1000 Гц), МГц (1000000 Гц). Частота – величина, обратная периоду. f =1/Т.

· Амплитуда – максимальное значение тока, напряжения или э.д.с. за время одного полного периода: Imax, Umax или Emax. За один период ток дважды проходит наибольшее значение (Imax) значение:

— один раз при изменении в положительном направлении,

— другой – в отрицательном.

Рис.3.1. Графическое изображение синусоидального переменного тока

Мгновенным значением переменного тока называется значение переменного тока (напряжения или э.д.с.) в данный период времени.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Цепи постоянного тока

В состав входят отдельные устройства, которые выполняют свои определенные функции. Они называются элементами электрической цепи. Основными элементами считаются источники электроэнергии и устройства, принимающие эту энергию. Во всех источниках, с не электрическими материалами происходит преобразование в электрическую энергию. Наиболее распространенными источниками являются аккумуляторы, гальванические элементы, электромагнитные генераторы, солнечные батареи и другие.

Читайте также:  Пфл таблица первого круга

Цепи постоянного и переменного тока

С помощью приемников электроэнергия может преобразовываться в иные виды энергии. К основным видам таких приемников можно отнести нагревательные элементы и приборы, электродвигатели, гальванические ванны, приборы освещения и прочие.

Кроме того, в электрической цепи содержатся элементы вспомогательного назначения. Например, с помощью реостатов, регулируется величина, напряжение регулируется при помощи потенциометров и делителей. От перегрузок цепь защищают предохранители, коммутацию обеспечивают выключатели. Контроль над режимом работы осуществляется контрольно измерительными приборами.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий

Источник

Основные параметры переменного тока: период, частота, фаза, амплитуда, гармонические колебания

Переменный ток — электрический ток, направление и сила которого изменяются периодически. Так как обычно сила переменного тока изменяется по синусоидальному закону, то переменный ток представляет собой синусоидальные колебания напряжения и силы тока.

Поэтому к переменному току применимо все то, что относится к синусоидальным электрическим колебаниям. Синусоидальные колебания — колебания, при которых колеблющаяся величина изменяется по закону синуса. В данной статье поговорим о параметрах переменного тока.

Изменение ЭДС и изменение тока линейной нагрузки, подключенной к такому источнику, будет происходить по синусоидальному закону. При этом переменные ЭДС, переменные напряжения и токи, можно характеризовать основными четырьмя их параметрами:

Есть и вспомогательные параметры:

ВЛЭП

Далее рассмотрим все эти параметры по отдельности и во взаимосвязи.

Период — время, в течение которого система, совершающая колебания, проходит через все промежуточные состояния и нале снова возвращается к исходному.

Периодом Т переменного тока называется промежуток времени, за который ток или напряжение совершает один полный цикл изменений.

Поскольку источником переменного тока является генератор, то период связан со скоростью вращения его ротора, и чем выше скорость вращения витка или ротора генератора, тем меньшим оказывается период генерируемой переменной ЭДС, и, соответственно, переменного тока нагрузки.

Период измеряется в секундах, миллисекундах, микросекундах, наносекундах, в зависимости от конкретной ситуации, в которой данный ток рассматривается. На вышеприведенном рисунке видно, как напряжение U с течением времени изменяется, имея при этом постоянный характерный период Т.

Частота f является величиной обратной периоду, и численно равна количеству периодов изменения тока или ЭДС за 1 секунду. То есть f = 1/Т. Единица измерения частоты — герц (Гц), названная в честь немецкого физика Генриха Герца, внесшего в 19 веке немалый вклад в развитие электродинамики. Чем меньше период, тем выше частота изменения ЭДС или тока.

Сегодня в России стандартной частотой переменного тока в электрических сетях является 50 Гц, то есть за 1 секунду происходит 50 колебаний сетевого напряжения.

В других областях электродинамики используются и более высокие частоты, например 20 кГц и более — в современных инверторах, и до единиц МГц в более узких сферах электродинамики. На приведенном выше рисунке видно, что за одну секунду происходит 50 полных колебаний, каждое из которых длится 0,02 секунды, и 1/0,02 = 50.

По графикам изменения синусоидального переменного тока с течением времени видно, что токи различной частоты содержат разное количество периодов на одном и том же отрезке времени.

Угловая частота — число колебаний, совершаемых за 2пи сек.

За один период фаза синусоидальной ЭДС или синусоидального тока изменяется на 2пи радиан или на 360°, поэтому угловая частота переменного синусоидального тока равна:

Пользоваться числом колебаний на 2пи сек. (а не за 1 сек.) удобно потому, что в формулах, выражающих закон изменения напряжений и токов при гармонических колебаниях, выражающих индуктивное или емкостное сопротивление переменному току, и во многих других случаях частота колебаний n фигурируют вместе с множителем 2пи.

Фаза — состояние, стадия периодическою процесса. Более определенный смысл имеет понятие фаза в случае синусоидальных колебаний. На практике обычно играет роль не фаза сама по себе, а сдвиг фаз между какими-либо двумя периодическими процессами.

В данном случае под термином «фаза» понимают стадию развития процесса, и в данном случае, применительно к переменным токам и напряжениям синусоидальной формы, фазой называют состояние переменного тока в определенный момент времени.

На рисунках можно видеть: совпадение напряжения U1 и тока I1 по фазе, напряжения U1 и U2 в противофазе, а также сдвиг по фазе между током I1 и напряжением U2. Сдвиг по фазе измеряется в радианах, долях периода, в градусах.

Амплитуда Uм и Iм

Говоря о величине синусоидального переменного тока или синусоидальной переменной ЭДС, наибольшее значение ЭДС или тока называют амплитудой или амплитудным (максимальным) значением.

Амплитуда — наибольшее значение величины, совершающей гармонические колебания (например, максимальное значение силы тока в переменном токе, отклонение колеблющегося маятника от положения равновесия), наибольшее отклонение колеблющейся величины от некоторого значения, условно принятого за начальное нулевое.

Строго говоря, термин амплитуда относится только к синусоидальным колебаниям, но его обычно (не вполне правильно) применяют в указанном выше смысле ко всяким колебаниям.

Если речь о генераторе переменного тока, то ЭДС на его выводах дважды за период достигает амплитудного значения, первое из которых +Eм, второе -Eм, соответственно во время положительного и отрицательного полупериодов. Аналогичным образом ведет себя и ток I, и обозначается соответственно Iм.

Гармонические колебания — колебания, в которых колеблющаяся величина, например напряжение в электрической цепи, меняется во времени по гармоническому синусоидальному или косинусоидальному закону. Графически представляются кривой — синусоидой.

Реальные процессы могут лишь приближенно быть гармоническими колебаниями. Однако если колебания отражают наиболее характерные черты процесса, то такой процесс считают гармоническими, что существенно облегчает решение многих физических и технических задач.

Движения, близкие к гармоническим колебаниям, совершаются в различных системах: механических (колебания маятника), акустических (колебания столба воздуха в органной трубе), электромагнитных (колебания в LC-контуре) и др. Теория колебаний рассматривает эти различные по физической природе явления с единой точки зрения и определяет их общие свойства.

Графически гармонические колебания удобно представить с помощью вектора, вращающегося с постоянной угловой скоростью вокруг оси, перпендикулярной к этому вектору и проходящей через его начало. Угловая скорость вращения вектора соответствует круговой частоте гармонического колебания.

Векторная диаграмма одного гармонического колебания

Периодический процесс любой формы может быть разложен в бесконечный ряд простых гармонических колебаний с различными частотами, амплитудами и фазами.

Гармоника — гармоническое колебание, частота которого в целое число раз больше частоты некоторого другого колебания, называемого основным тоном. Номер гармоники указывает, во сколько именно раз частота ее больше частоты основного тона (например, третья гармоника — гармоническое колебание с частотой, втрое большей, чем частота основного тона).

Всякое периодическое, но не гармоническое (т. е. отличающееся по форме от синусоидального) колебание может быть представлено в виде суммы гармонических колебаний — основного тона и ряда гармоник. Чем больше рассматриваемое колебание отличается по форме от синусоидального, тем большее число гармоник оно содержит.

Мгновенное значение u и i

Значение ЭДС или тока в конкретный текущий момент времени называется мгновенным значением, они обозначаются маленькими буквами u и i. Но поскольку эти значения все время меняются, то судить о переменных токах и ЭДС по ним неудобно.

Действующие значения I, E и U

Способность переменного тока к совершению какой-нибудь полезной работы, например механически вращать ротор двигателя или производить тепло на нагревательном приборе, удобно оценивать по действующим значениям ЭДС и токов.

Так, действующим значением тока называется значение такого постоянного тока, который при прохождении по проводнику в течение одного периода рассматриваемого переменного тока, производит такую же механическую работу или такое же количество теплоты, что и данный переменный ток.

Действующие значения напряжений, ЭДС и токов обозначают заглавными буквами I, E и U. Для синусоидального переменного тока и для синусоидального переменного напряжения действующие значения равны:

Действующее значение тока и напряжения удобно практически использовать для описания электрических сетей. Например значение в 220-240 вольт — это действующее значение напряжения в современных бытовых розетках, а амплитуда гораздо выше — от 311 до 339 вольт.

Так же и с током, например когда говорят, что по бытовому нагревательному прибору протекает ток в 8 ампер, это значит действующее значение, в то время как амплитуда составляет 11,3 ампер.

Так или иначе, механическая работа и электрическая энергия в электроустановках пропорциональны действующим значениям напряжений и токов. Значительная часть измерительных приборов показывает именно действующие значения напряжений и токов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Adblock
detector