Меню

Давление насыщенного пара углекислого газа таблица



Давление насыщенных паров двуокиси углерода

t, °С р, мм рт. ст t, °С р, атм
-134,3 (тв) 1 -70 2,02
-119,5 10 -60 4,18
-108,6 40 -56,7 (жидк) 5,0
-100,2 100 -50,0 6,74
-93,75 200 -40 9,92
-89,35 300 -39,5 10,0
-86,28 400 -30 14,10
-83,87 500 -20 19,44
-81,75 600 -18,9 20,0
-80,0 700 -10 26,13
-78,5 760 34,38
-75 1008,2 (1,32 атм) +10 44,42
20 56,49
30 71,14
31,1 (кр) 72,95

× Источник: Справочник сернокислотчика. Под ред. К.М. Малина. Изд. 2-е дополн. и перераб. — М: Химия, 1971. С. 8

Химический справочник . 2014 .

Смотреть что такое «Давление насыщенных паров двуокиси углерода» в других словарях:

Титания (спутник) — Титания спутник Урана Снимок «Вояджера … Википедия

ГОСТ Р 51057-2001: Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 51057 2001: Техника пожарная. Огнетушители переносные. Общие технические требования. Методы испытаний оригинал документа: 3.1 водный огнетушитель: Огнетушитель с зарядом воды или воды с добавками, расширяющими область… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 51017-2009: Техника пожарная. Огнетушители передвижные. Общие технические требования. Методы испытаний — Терминология ГОСТ Р 51017 2009: Техника пожарная. Огнетушители передвижные. Общие технические требования. Методы испытаний оригинал документа: 3.1 водный огнетушитель : Огнетушитель с зарядом воды или воды с добавками, расширяющими область… … Словарь-справочник терминов нормативно-технической документации

СП 9.13130.2009: Техника пожарная. Огнетушители. Требования к эксплуатации — Терминология СП 9.13130.2009: Техника пожарная. Огнетушители. Требования к эксплуатации: 3.1 баллон высокого давления: Сосуд, имеющий горловину для установки вентиля, фланца или штуцера, предназначенный для хранения и использования сжатых или… … Словарь-справочник терминов нормативно-технической документации

Источник

Давление насыщенного пара углекислого газа таблица

Давление насыщенного пара диоксида углерода

В табл. 3.3.15–3.3.18 представлена информация по давлению диоксида углерода (твердого и жидкого), аммиака и серы в зависимости от температуры; в табл. 3.3.19–3.3.22 приведены данные по давлению насыщенного пара в равновесии с водой, переохлажденной водой и со льдом, а также данные по температуре кипения воды при высоких давлениях.

Давление насыщенного пара твердого диоксида углерода

Температура, °С
Десятки Единицы
–8 –6 –4 –2
Давление, Па
–180 6,67 · 10 –5 1,47 · 10 –4 4,00 · 10 –4 8,00 · 10 –4 0,00173
–170 0,00347 0,00693 0,0133 0,0267 0,0493
–160 0,0893 0,159 0,28 0,48 0,787
–150 1,31 2,11 3,35 5,23 8,07
–140 12,3 18,4 27,2 39,7 57,5
–130 0,0813 0,116 0,163 0,224 0,308
–120 0,417 0,563 0,751 0,995 1,31
–110 1,71 2,21 2,85 3,64 4,62
–100 5,83 7,31 9,12 11,3 14,0
–90 17,2 21,0 25,5 31,0 37,3
–80 44,8 53,5 63,8 75,8 89,6
–70 105 124 146 170 198
–60 230 267 309 356 410
–50 471

Давление насыщенного пара (МПа) жидкого диоксида углерода

Температура, °С
Десятки Единицы
–8 –6 –4 –2 2 4 6 8
–50 0,487* 0,532 0,579 0,63 0,684
–40 0,741 0,802 0,866 0,934 1,01
–30 1,08 1,16 1,25 1,34 1,43
–20 1,53 1,63 1,74 1,85 1,97
–10 2,1 2,22 2,36 2,5 2,65
2,8 2,96 3,0 3,3 3,49 3,67 3,87 4,07 4,28
10 4,5 4,5 4,73 4,96 5,21
20 5,73 5,73 6,0 6,29 6,58
30 7,21 7,21

Давление насыщенного пара (МПа) аммиака

Tкр = 132,4 °С; ркр = 11,67 МПа; Vкр = 4,26 см 3 /г.

Температура, °С
Десятки Единицы
–9 –8 –7 –6 –5 –4 –3 –2 –1
–70 0,0059 0,00639 0,00692 0,00748 0,00808 0,00872 0,00941 0,0101 0,0109
–60 0,0117 0,0126 0,0136 0,0146 0,0156 0,0167 0,0179 0,0192 0,0205 0,0219
–50 0,0234 0,0249 0,0266 0,0283 0,0302 0,0321 0,0341 0,0363 0,0385 0,0409
–40 0,0434 0,046 0,0487 0,0515 0,0545 0,0577 0,061 0,0644 0,068 0,0718
–30 0,0757 0,0798 0,0841 0,0885 0,0932 0,199 0,103 0,108 0,114 0,12
–20 0,126 0,132 0,138 0,145 0,152 0,159 0,166 0,174 0,182 0,19
–10 0,199 0,208 0,217 0,226 0,236 0,247 0,257 0,268 0,279 0,293
0,303 0,315 0,328 0,341 0,355 0,369 0,383 0,398 0,414 0,429

Десятки 1 2 3 4 5 6 7 8 9
0,429 0,446 0,462 0,48 0,497 0,516 0,534 0,554 0,574 0,594
10 0,615 0,636 0,657 0,681 0,704 0,728 0,753 0,778 0,804 0,83
20 0,857 0,885 0,913 0,942 0,972 1,0 1,03 1,07 1,1 1,13
30 1,17 1,2 1,24 1,27 1,31 1,35 1,39 1,43 1,47 1,51
40 1,55 1,6 1,64 1,69 1,73 1,78 1,83 1,88 1,93 1,98
50 2,03 2,09 2,14 2,2 2,25 2,31 2,37 2,43 2,49 2,55
60 2,63 2,68 2,74 2,81 2,88 2,95 3,02 3,09 3,16 3,24
70 3,31
80 4,14
90 5,12
100 6,26
110 7,58
120 9,12
130 10,9

Давление насыщенного пара (Па) серы и ее модификаций

Источник

Физические свойства углекислоты

Углекислота жидкая (СО2, двуокись углерода, диоксид углерода)

  • Углекислота жидкая — это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
    • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений — срок хранения 2 года.
    • В транспортной бочке ЦЖУ-18 — срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 «Двуокись углерода»
  • Чтобы узнать цены и сроки поставки нажмите подробнее.

    Углекислота (СО2, двуокись углерода, диоксид углерода) – вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях – газообразном, жидком, твёрдом и сверхкритическом.

    Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться – переходить сразу в твёрдое состояние, минуя жидкую фазу.

    Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте – путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

    Жидкое состояние СО2 носит техническое название «жидкая углекислота» или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

    При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

    При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

    При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется – постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

    Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

    При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

    • Удельный вес. Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
    • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
    • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
    • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
    • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное , стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
    • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 — 1,6.

  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p — A, где
  • V — объем, м3/кг;
  • R — газовая постоянная 848/44 = 19,273;
  • Т — температура, К град.;
  • р давление, кг/м2;
  • А — дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =( 0, 0825 + (1,225)10-7 р)/(Т/100)10/3.

  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i’ x + i» у = i,
  • x + у = 1, где,
  • x и у — доля вещества в жидком и парообразном виде;
  • i’ — энтальпия жидкости;
  • i» — энтальпия пара;
  • i — энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i» у + i» z = i,
  • у + z = 1, где,
  • i» — энтальпия твердой углекислоты;
  • z — доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i’ x + i» у + i»’ z = i,
  • x + у + z = 1.
  • Зная значения i,’ i’,’ i»’ для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.

  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t — 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I – ккал/кг, р – кг/см2, Т – град.К, t – град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же , вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность. Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 — 147 152 157
  • 40 — 173 174 175
  • 60 — — 228 213
  • 80 — — — 325
  • Жидкая углекислота
  • 50 848 — — —
  • 60 870 753 — —
  • 70 888 776 — —
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле :
    236,5/Т1,216 ст., ккал/м*час*град.С.

    Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.

  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град .
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 – 125 ати, находится в пределах 1,6016 – 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 — 39 ати 1,009 – 1,060.

  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p – p’ = 0,41 p’/p – p’ кг/кг, где
  • p’ – парциальное давление водяных паров при 100%-м насыщении;
  • р – общее давление паро-газовой смеси.

  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 – 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р — парциальное давление газа над жидкостью;
  • Х — количество газа в молях;
  • Н – коэффициент Генри.

  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

    Техника безопасности

    При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

    Источник

    Таблица насыщенного пара

    В статье приведен фрагмент таблицы насыщенного и перегретого пара. С помощью этой таблицы по значению давления пара определяются соответствующие значения параметров его состояния.

    Теплота парообразования (конденсирования)

    ok.pngРасширенная таблица насыщенного пара

    Столбец 1: Давление пара (p)

    В таблице указано абсолютное значение давления пара в бар. Этот факт необходимо иметь ввиду. Когда речь идет о давлении, как правило говорят об избыточном давлении, которое показывает манометр. Однако, инженеры-технологи в своих расчетах используют значение абсолютного давления. В практике эта разница часто приводит к недоразумениям и обычно с неприятными последствиями.

    С введением системы СИ было принято, что в расчетах должно использоваться только абсолютное давление. Все приборы измерения давления технологического оборудования (кроме барометров) в основном показывают избыточное давление, мы подразумеваем абсолютное давление. Под нормальными атмосферными условиями (на уровне моря) понимают барометрическое давление 1 бар. Избыточное давление обычно указывается в бари (barg).

    вопрос.png

    Столбец 2: Температура насыщенного пара (ts)

    В таблице, наряду с давлением, приведена соответствующая температура насыщенного пара. Температура при соответствующем давлении определяет точку кипения воды и таким образом температуру насыщенного пара. Значения температуры в этом столбце определяют также температуру конденсации пара.

    При давлении 8 бар температура насыщенного пара составляет 170оС. Конденсат, образованный из пара при давлении 5 бар, имеет соответствующую температуру 152 оС.

    вопрос.png

    Интересно будет прочитать: Перегретый пар

    Столбец 3: Удельный объем (v”)

    Удельный объем указывается в м3/кг. С увеличением давления пара величина удельного объема уменьшается. При давлении 1 бар удельный объем пара составляет 1,694 м3/кг. Или иначе говоря 1 дм3 (1 литр или 1 кг) воды при испарении увеличивается в объеме в 1694 раза по сравнению с первоначальным жидким состоянием. При давлении 10 бар удельный объем составляет 0,194 м3/кг, что в 194 раза больше, чем у воды. Значение удельного объема используются в расчетах диаметров паро- и конденсатопроводов.

    вопрос.png

    Столбец 4: Удельный вес (ρ=ро)

    Удельный вес (также называется плотность) указан в кДж/кг. Он показывает, сколько килограмм пара содержится в 1 м3 объема. С увеличением давления удельный вес увеличивается. При давлении 6 бар пар объемом 1м3 имеет вес 3,17 кг. При 10 бар – уже 5,15 кг и при 25 бар – более 12,5 кг.

    вопрос.pngИнтересно будет прочитать: Парообразование и испарение воды

    Столбец 5: Энтальпия насыщения (h’)

    Энтальпия кипящей воды указана в кДж/кг. Значения в этом столбце показывают, какое количество тепловой энергии необходимо, чтобы 1 кг воды при определенном давлении довести до состояния кипения, или какое количество тепловой энергии содержит конденсат, который при том же давлении сконденсировался из 1 кг пара. При давлении 1 бар удельная энтальпия кипящей воды составляет 417,5 кДж/кг, при 10 бар – 762,6 кДж/кг, и при 40 бар – 1087 кДж/кг. С увеличением давления пара энтальпия воды увеличивается, причем ее доля в суммарной энтальпии пара при этом постоянно растет. Это значит, чем выше давление пара, тем больше тепловой энергии остается в конденсате.

    вопрос.png

    Столбец 6: Суммарная энтальпия (h”)

    Энтальпия указан в кДж/кг. В этом столбце таблицы приведены значения энтальпии пара. Из таблицы видно, что энтальпия растет до давления 31 бар и при дальнейшем увеличении давления снижается. При давлении 25 бар значение энтальпии 2801 кДж/кг. Для сравнения значение энтальпии при 75 бар составляет 2767 кДж/кг.

    вопрос.png

    Столбец 7: Тепловая энергия парообразования (конденсации) (r)

    Энтальпия парообразования (конденсации) указана в кДж/кг. В этом столбце приведены значения количества тепловой энергии, которое требуется для полного испарения 1 кг кипящей воды при соответствующем давлении. И наоборот – количество тепловой энергии, которое высвобождается в процессе полной конденсации (насыщенного) пара при определенном давлении.

    При давлении 1 бар r = 2258 кДж/кг, при 12 бар r = 1984 кДж/кг и при 80 бар r = лишь 1443 кДж/кг. С увеличением давления количество тепловой энергии парообразования или конденсации снижается.

    При увеличении давления пара количество тепловой энергии, необходимое для полного испарения кипящей воды, уменьшается. И в процессе конденсации насыщенного пара при соответствующем давлении высвобождается меньше тепловой энергии.

    вопрос.png

    Источник: «Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010»

    Получить консультацию и приобрести оборудование для паро-конденсатных систем можно по телефону (495) 268-0-242.

    Источник

Читайте также:  Таблица мер длины 3 класс петерсон
Adblock
detector