Меню

Аллотропные изменения углерода таблица

Аллотропия углерода

Углерод — вещество с самым [источник не указан 804 дня] большим числом аллотропических модификаций (более 8 уже обнаружены).

Аллотропные модификации углерода по своим свойствам наиболее радикально отличаются друг от друга, от мягкого к твёрдому, непрозрачного к прозрачному, абразивного к смазочному, недорогого к дорогому. Эти аллотропы включают аморфные аллотропы углерода (уголь, сажа), нанопена, кристаллические аллотропы — нанотрубка, алмаз, фуллерены, графит, лонсдейлит и церафит.

Содержание

Классификация

Классификация аллотропов углерода по характеру химической связи между атомами:

  • sp 3 формы:
    • Алмаз (куб)
    • Лонсдейлит (гексагональный алмаз)
  • sp 2 формы
    • Графит
    • Графены
    • Фуллерены (C20+)
    • Нанотрубки
    • Нановолокна
    • Астралены
    • Стеклоуглерод
    • Колоссальные нанотрубки
  • sp формы
    • Карбин
  • Смешанные sp 3 /sp 2 формы
    • Аморфный углерод
    • Углеродные нанопочки
    • Нанопена углерода
  • Другие формы: C1 — C2 — C3 — C8

Алмаз

Алмаз является одним из наиболее известных аллотропов углерода, чья твёрдость и высокая степень рассеивания света делает его полезным в промышленном применении и в ювелирных изделиях. Алмаз — самый твёрдый известный природный минерал, что делает его отличным абразивом и позволяет использовать для шлифовки и полировки. В природной среде нет ни одного известного вещества, способного поцарапать даже мельчайший фрагмент алмаза.

Рынок алмазов промышленного класса несколько отличен от рынков других драгоценных камней. Используемые в промышленности алмазы ценятся главным образом за их твёрдость и теплопроводность, из-за чего другие геммологические характеристики алмазов, в том числе чистота и цвет, по большей части излишни. Это помогает объяснить, почему 80 % добываемых алмазов (что эквивалентно примерно 100 млн. каратам или 20000 кг в год), непригодно для использования в качестве драгоценных камней и известны как борт, предназначенные для промышленного использования. В дополнение к добываемым алмазам, находят промышленное применение и искусственные синтетические алмазы, используемые практически сразу же после их изобретения в 1950 г., а ещё 400 миллионов каратов (80000 кг) синтетических алмазов выпускаются ежегодно для промышленного использования — почти в четыре раза больше массы природных алмазов, добытых за тот же период.

Основным промышленным применением алмазов является резка, сверление (в наконечниках свёрл и буров), шлифовка (резка алмазными гранями) и полировка. Большинство используемых в этих технологиях алмазов не требует крупных образцов; фактически, большинство алмазов качества драгоценных камней, могут использоваться в промышленности. Алмазы вставляются в наконечники буров или режущие кромки пилы или измельчаются в порошок для использования процессах шлифования и полирования. Специализированное применение включает в себя использование в лабораториях в качестве сдерживающих веществ при экспериментах с высоким давлением, в высокопроизводительных подшипниках и ограниченное применение в специализированных окнах.

С продолжающимся увеличением в производстве синтетических алмазов, их будущее применение становится более осуществимым. Накопление большого запаса — это возможность использовать алмазы в качестве полупроводников при изготовлении микрочипов или использовать для поглощения тепла в электронике. Значительные достижения в исследованиях в Японии, Европе и Соединённых Штатах позволяют использовать возможности, предоставляемые уникальными свойствами алмазного вещества, в сочетании с повышением качества и количества, обеспечиваемыми производителями синтетических алмазов.

Каждый атом углерода в алмазе ковалентен с четырьмя другими атомами углерода в тетраэдре. Эти тетраэдры вместе образуют трёхмерную сеть из слоёв шестичленных колец атомов. Эта устойчивая сеть ковалентных связей и трёхмерное распределение связей является причиной такой твёрдости алмазов.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен — «тянуть/писать», использовался в карандашах) — один из самых обычных аллотропов углерода. Характеризуется гексагональной слоистой структурой. Встречается в природе. Твердость по шкале Мооса 1. Его плотность — 2.3, она меньше чем у алмаза. Приблизительно при 700 °C горит в кислороде, образовывая углекислый газ. По химической активности более реакционен чем алмаз. Это связано с проникновением реагентов между гексагональными слоями атомов углерода в графите. Не взаимодействует с обычными растворителями, кислотами или расплавленными щелочами. Однако, хромовая кислота окисляет его до углекислого газа. Получают нагреванием смеси пека и кокса при 2800 °C; из газообразных углеводородов при 1400—1500 °C при пониженных давлениях с последующим нагреванием образовавшегося пироуглерода при 2500−3000 °C и давлении около 50 МПа с образованием пирографита. В отличие от алмаза, графит обладает электропроводностью и широко применяется в электротехнике. Графит является самой устойчивой формой углерода при стандартных условиях. Поэтому в термохимии он принят за стандартное состояние углерода. Применяется для изготовления плавильных тиглей, футеровочных плит, электродов, нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах, стержней карандашей, при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза.

Порошок графита используется как сухая смазка. Однако в вакууме он заметно теряет смазочные свойства, это связано с тем, что смазочные свойства графита связаны с адсорбрцией воздуха и воды между слоями в графите, в отличие от других слоистых сухих смазок, типа дисульфида молибдена. При большом количестве кристаллографических дефектов, которые связывают слои в структуре, графита, он также теряет смазывающие свойства и становится подобным пиролитическому графиту.

Природные и кристаллические графиты редко используются в чистой форме из-за их скалываемости, хрупкости и противоречивых механических свойств.

Его чистые структурно изотропные синтетические формы, как например пиролитический графит и углеродистые графитовые волокна, представляют чрезвычайно прочный, огнеупорный (до 3000 °C) материал, используемый для защиты носовых конусов ракет, в конструкциях сопел твердотопливных двигателей ракеты, высокотемпературных реакторов, тормозных колодок и электрических моторных щеток.

Вспучивающиеся или растяжимые графиты используются в печах нагрева для герметизации ее элементов. В процессе нагрева графит вспучивается (расширяется и обжигается) и герметизирует области контакта. Типичная температура начала расширения (область температур) — между 150 и 300 °C. Электропроводность графита связана с делокализацией электронов пи — связей выше и ниже плоскостей расположения атомов углерода. В отличие от алмаза, в котором все четыре внешних электрона каждого атома углерода ‘локализованы’ между атомами в ковалентной связи, в графите, каждый атом связан ковалентной связью только с 3 из его 4 внешних электронов. Поэтому каждый атом углерода вносит один электрон в делокализованную систему электронов. Эти электроны находятся в зоне проводимости. Однако электропроводность графита ориентирована по поверхности слоев. Поэтому графит проводит электричество по плоскости слоя атомов углерода, но не проводит в направлении под прямым углом к плоскости.

Источник



Аллотропные модификации углерода

Классификация

Возможность присоединять четыре атома делает углерод активным элементом. Помимо присоединения атомов других элементов углерод может образовывать различные модификации, отличающиеся структурой и свойствами.

Строение атома углерода

Рис. 1. Строение атома углерода.

Читайте также:  Футбол таджикистан турнир таблица

Выделяют два вида углерода в зависимости от образования модификаций:

  • кристаллический – входит в состав твёрдых веществ;
  • аморфный – образует мягкие вещества.

Кристаллические формы углерода:

  • алмаз;
  • лонсдейлит;
  • наноалмаз;
  • графит;
  • графен;
  • карбин;
  • фуллерены;
  • фуллерит;
  • углеродное волокно;
  • углеродные нановолокна;
  • углеродные нанотрубки.

В соответствии с геометрическим строением кристаллической решётки выделяют три типа аллотропных модификаций:

  • тетраэдрическая (sp 3 -гибридизация) – один атом углерода, находящийся в центре, связан с атомами в узлах тетраэдра;
  • тригональная (sp 2 -гибридизация) – атомы углерода образуют шестиугольники, связанные друг с другом послойно;
  • линейная (sp-гибридизация) – атомы углерода образуют цепочки, связанные одинарными, двойными, тройными связями.

Строение кристаллических решёток углерода

Рис. 2. Строение кристаллических решёток углерода.

Аморфный углерод образует следующие модификации:

  • активированный уголь;
  • древесный уголь;
  • ископаемый уголь;
  • кокс каменноугольный;
  • стеклоуглерод;
  • углеродная нанопена;
  • техуглерод;
  • сажа.

Лонсдейлит является гексагональной модификацией алмаза. Наноалмазы, фуллерены, нанотрубки, нанографиты объединены в семейство наноуглеродных кластеров. Они образованы вложенными друг в друга углеродными сферами.

Основные модификации

Наиболее изучены твёрдые формы углерода – алмаз, графит и карбин. Особенности строения и свойства аллотропных модификаций углерода представлены в таблице.

Модификация

Строение решётки

Свойства

Применение

Относительно мягкий жирный минерал, обладающий электропроводностью. Имеет серый цвет, металлический блеск. Плотность – 2,23 г/см 3 . Не плавится. Реагирует со щелочными металлами, солями, кислородом

Смазка в прокатном производстве. За счёт отслоения тригональной решётки используется в качестве стержня карандаша

Мелкокристаллический порошок с небольшой плотностью. Полупроводник

Используется в фотоэлементах

Прозрачный минерал, обладающий наибольшей твёрдостью. Обладает теплопроводностью, является полупроводником. Имеет большой показатель преломления. Плавится при температуре 3700°C

Драгоценный камень, абразив. Из алмаза изготавливают свёрла, ножи, резцы

Рис. 3. Графит, карбин и алмаз.

При сильном нагревании графит переходит в алмаз, а алмаз – в графит.

Что мы узнали?

Углерод имеет множество аллотропных модификаций. Основные из них – графит, алмаз, карбин. Они отличаются друг от друга физическими, химическими свойствами, строением кристаллической решётки. Наиболее твёрдая модификация – алмаз – используется для изготовления промышленных инструментов. Графит – мягкий минерал – применяется в прокатной промышленности. Благодаря строению способен отслаиваться, оставляя след, поэтому используется в качестве карандашного стержня. Карбин – порошок, который используется в фотоэлементах.

Источник

Творческие проекты и работы учащихся

В индивидуальной исследовательской работе по химии «Углерод и его аллотропные модификации» автор изучает литературу по теме исследования и подробно рассказывает об аллотропных модификациях углерода, о химических и физических свойствах, а также знакомится с её видами.

Подробнее о проекте:

Учащаяся института профессионального образования в рамках своего проекта на тему «Углерод и его аллотропные модификации» изучила такие аллотропные модификации углерода, как алмаз, графит и фуллерен, описала историю их открытия и структуру каждого рассматриваемого вещества. Также изучены и представлены физические и химические свойства алмаза, графита и фуллерена.

Оглавление

Введение
1. Понятие аллотропии.
2. Аллотропные модификации углерода.
3. Алмаз.
4. Графит.
5. Фуллерен.
6. Физические свойства.
7. Химические свойства.
8. Практическая часть.
Заключение
Список использованной литературы

Введение

Углерод и его аллотропные модификации имеют большое практическое значение в жизни человека и промышленности.

Цель исследования: Подробно рассказать об аллотропных модификациях углерода, о химических и физических свойствах, а также ознакомиться с её видами.

  1. проведем анализ, соберем и изучим информацию о аллотропии.
  2. выясним чем она нам может пригодиться в жизни.
  3. сделаем стенд где наглядно показано как выглядит аллотропия.

Понятие аллотропии

Понятия «Аллотропия» имеет древнегреческие корни: αλλος — другой, τροπος — свойство. Аллотропия — существование двух и более простых веществ одного и того же химического элемента. Понятие аллотропии введено в науку Й. Берцелиусом в 1841 году для обозначения разных форм существования элементов.

Явление аллотропии подразумевает возможность создания из одного и того же элемента определенного количества различных веществ. Например, кислород и озон в своем составе содержат только лишь оксиген. Вопрос о том, как это вообще возможно, на протяжении длительного периода времени интересовал многих людей. На сегодняшний момент ученые легко могут объяснить все особенности этого процесса.

Далеко не все элементы способны образовывать несколько разных простых веществ. Такая способность напрямую зависит от структуры молекул. Чаще всего подобное явление наблюдается у элементов, которые имеют переменные окислительные степени.

Это касается таких групп, как:

  • неметаллы;
  • полуметаллы;
  • благородные газы;
  • галогены.

Причины аллотропии могут быть нескольких типов. К наиболее вероятным из них ученые относят такие факторы, как:

  • Различное количество атомов, необходимых для образования одной молекулы.
  • Отличающийся порядок сопряжения атомов в одну молекулу.
  • Параллели между спинами электронов.
  • Разновидность кристаллической решетки.

Для того чтобы наглядно понять, каким образом может существовать явление аллотропии, необходимо рассмотреть несколько наиболее примечательных примеров, широко встречающихся в природе.

При нагревании металлов в процессе превращения поглощается тепло, при этом изменение решеточной конструкции происходит при одной и той же температуре. Аллотропным модификациям подвергаются многие металлы, например, титан, железо, олово и др. Железо при нагревании до +1390 ºС характеризуется гранецентрированной решеткой. Повышение температуры до +1540 ºС ведет к перестройке до центрировано-кубической структуры.

Аллотропные модификации углерода

Углерод в виде угля, копоти и сажи известен человеку с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнём. Вероятно, очень рано люди познакомились и с аллотропными изменениями углерода – алмазом и графитом, а также с ископаемым углем. Не удивительно, что горение углеродсодержащих веществ было одними из первых химических процессов, заинтересовавших человека.

Элементом был огонь-явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII-XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества – невесомого флюида-флогистона, улетучивающегося в процессе горения.

Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь-это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, — его способность восстанавливать металлы из «известей» и руд. Позднейшие флогистики, Реомюр, Бергман и др., уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ.

В книге Гитона де Морво, Лавуазье и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерода» вместо французского «чистый уголь». Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье. В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно.

Читайте также:  Продукты содержащие магний цинк таблица

Еще в 1751 году французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, пришел к выводу, что алмаз представляет собой кристаллический углерод.

Второй аллотроп углерода – графит в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 году Потт обнаружил отсутствие в графите какой – либо примеси свинца. Шееле исследовал графит (1779) и будучи флогистиком счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона. Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от латинского carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare – гореть; корень car, cal, русское гар, гал и гол, санскритское cra означает кипятить, варить. Со словом «carbo» связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle – уголь.

Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз происходит от древнегреческого – несокрушимый, непреклонный, твердый, а графит от греческого – пишу. В начале XIX в. Старое слово уголь в русской химической литературе иногда заменялось словом «углетвор» (шере, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.

углерод 1

Алмаз

Согласно современным теоретическим представлениям, тверже алмаза ничего в мире быть не может — такова у него кристаллическая решетка. Можно сказать, что алмаз — самый крепкий минерал в мире. Плавится алмаз при высоких температурах, от 3700 до 4 тыс. градусов. Но еще раньше, при 850 градусах, он начинает гореть, а без доступа воздуха при достижении половины от температуры плавления превращается в графит.

Алмазы не всегда были драгоценными камнями, имевшими ценность и шкалу стоимости. В природе этот камушек непривлекателен — простая шершавая стекляшка. Ценность ему придает огранка. Все изменилось в XIX веке, когда в Южной Африке около современного города Кимберли на ферме братьев де Бирс обосновались искатели алмазов. Камней на этих землях было много. Настоящая промышленная их добыча стала связана с именем Сесиля Родса.

Сесиль Родс стал монополистом на рынке алмазов, чему поспособствовали Ротшильды, а бриллианты стали потребительским товаром, доступным не только королям. Монопольное положение де Бирс пошатнулось только в середине XX века благодаря антимонопольному законодательству в США и началу массовой добычи в странах, где возможностей захвата рынка в принципе не было — например, в СССР. Существует несколько способов огранки алмазов, при которой они лучше всего проявляют такое свое свойство, как игру цвета. Играет свою роль и исходная форма камня, поскольку огранщик старается свести его потери к минимуму.

Наиболее распространенными формами бриллианта являются:

  • круглая, 57 граней;
  • овальная;
  • «груша»;
  • «маркиза»;
  • радиант;
  • квадрат;
  • «принцесса».

Один атом углерода окружен еще четырьмя атомами в виде четырехгранного треугольника или пирамиды. Каждый атом находится на одинаковом расстоянии друг от друга. Связь у атомов очень крепкая, именно поэтому алмаз является таким твердым и прочным. Еще одно свойство алмаза — это то, что он может проводить свет, в отличие от графита.

углерод 2

Графит

Графи́т — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Структура слоистая. Слои кристаллической решётки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный), до тригональной (дитригонально-скаленоэдрический).

Слои слабоволнистые, почти плоские, состоят из шестиугольных слоёв атомов углерода.

В 60-х годах XVI столетия в Англии. Местные пастухи, нашедшие залежи странного черно-блестящего материала, приняли его сначала за свинец, но, поняв, что пуль из него не отольешь, стали отбивать куски черного камня и метить им своих овец. На новый материал скоро обратили внимание художники и коммерсанты, быстро наладившие на английских улицах торговлю тонкими пластинками и кусочками графита. Конечно, пользоваться им было очень неудобно — руки пачкались! Приходилось обматывать графит веревкой, бумагой, а то и просто зажимать между дощечек. Так появились первые карандаши в деревянном корпусе.

Физические свойства в графите сильно различаются по направлениям – перпендикулярному и параллельному слоям атомов углерода.

При нагревании без доступа воздуха графит не претерпевает никаких изменений до 3700°С. При указанной температуре он возгоняется, не плавясь.

Искусственный графит получают из лучших сортов каменного угля при 3000°С в электрических печах без доступа воздуха.

Графит термодинамически устойчив в широком интервале температур и давлений, поэтому он принимается в качестве стандартного состояния углерода. Плотность графита составляет 2,265 г/см3.

Известны две формы графита: альфа-графит (имеет гексагональную структуру и кристаллическую решетку) и бета-графит (имеет ромбоэдрическую структуру и кристаллическую решетку). У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника, а у β-графита каждый четвёртый слой повторяет первый.

Альфа-графит может быть преобразован в бета-форму с помощью механической обработки. Бета-форма переходит в альфа-форму при нагревании графита свыше 1300 °C.

Фуллерен

Открытие фуллерена произошло в результате экспериментов Смолли и Крото с инструментом, который Смолли изобрел для изучения молекул и атомных кластеров. Крото заинтересовала предложенная Смолли методика лазерного испарения. С ее помощью он намеревался проверить свою теорию о поведении углерода в межзвездном пространстве. Крото считал, что богатые углеродом красные гиганты способны испускать сложные углеродные соединения, которые можно обнаруживать с помощью радиотелескопов.

Атом связь Фуллерен является новой аллотропной формой углерода. Молекулы фуллерена состоят из 60,70 атомов, образующих сферу. Кристаллические фуллерены представляют собой полупроводники. Разнообразие физико-химических и структурных свойств соединений на основе фуллеренов позволяет говорить о химии фуллеренов как о новом перспективном направлении органической химии.

Атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов фуллерен (C60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч.

Читайте также:  Таблица расчета стальной балки

Следующим по распространённости является фуллерен C70, отличающийся от фуллерена C60 вставкой пояса из 10 атомов углерода в экваториальную область C60, в результате чего молекула C70 оказывается вытянутой и напоминает своей формой мяч для игры в регби. Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить Cn, n=74, 76, 78, 80, 82 и 84.

углерод 3

Физические свойства

Физические свойства. Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Поэтому разные модификации проявляют очень разные физические свойства это и очень твердое вещество, и мягкое вещество проводящее электрический ток и многие другие.

Алмаз:

Физ. свойства. Алмаз и графит резко отличаются по физ. Свойствам. Алмаз – прозрачные кристаллы, очень твердые. Твердость объясняется строением его кристаллической решетки. Графит – мягкое темно-серое вещ-во с Ме блеском.

Графит:

Физические свойства графита. – мягкое черное вещество из легко слоящихся кристалликов, — проводит электрический ток, — графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. — температура плавления при повышенном давлении равна 3527° C. — При обычном давлении графит сублимирует при 3780° C.

Фуллерен:

Физические свойства фуллерена Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами. Наиболее изученная система такого рода — кристалл С60, менее — система кристаллического С70. Исследования кристаллов высших фуллеренов затруднены сложностью их получения.

Химические свойства

Алмаз:

При обычной температуре углерод малоактивен. Он может быть, как восстановителем, так и окислителем. Как восстановитель: Горит на воздухе.

Графит:

Химические свойства. Со многими веществами (щелочными металлами, солями) образует соединения включения. Реагирует при высокой температуре с воздухом, сгорая до углекислого газа.

Фуллерен:

Восстановление, нуклеофильное присоединение, цикло присоединение, региохимическое множественное присоединение, галогенирование, модифицирование фуллеренов, кластерами гидрирование, присоединение радикалов, образование комплексов, переходных металлов окисление и реакции с электрофильными реагентами.

углерод 4

Практическая часть

Новая аллотропная модификация:

15 августа 2019 года группа учёных из IBM и Оксфордского университета опубликовала статью, в которой представлены данные об успешном синтезе молекулы цикло [18] углерода. Ранее существование циклоуглеродов считалось лишь гипотетическим, но теперь C18 — представитель новой аллотропной модификации углерода.

C18 был получен путём удаления монооксида углерода из молекулы C24O6 принципом атомно-силовой микроскопии на двухслойной поверхности хлорида натрия при температуре 5°K (-268,15°С). По мнению учёных, циклоуглероды могут оказаться полезными в компьютерных технологиях в качестве чрезвычайно энергоэффективного компьютерного логического устройства. Кроме того, создание С18 открывает путь для синтеза других углеродных аллотропов, но пока что предстоит глубокое изучение свойств новой молекулы.

Заключение

Углерод — вещество с самым большим числом аллотропических модификаций. В проекте рассмотрены аллотропные модификации алмаза, графита, фуллерена. Углерод и его аллотропные модификации имеют большое практическое значение в жизни человека и промышленности.

Большинство вещей в нашей жизни мы получили благодаря аллотропным модификациям, например, сверло, чёрные графитовые карандаши и батарейки.

Благодаря этому проекту мы узнала, как и кто помог нам в улучшении нашей жизни.

Исходя из всей проделанной работы, мы можем сделать следующие выводы:

  • Во-первых, я подробно изучила и рассмотрела виды аллотропии.
  • Во-вторых, я узнала кто открыл аллотропии, и где она применяется.
  • В-третьих, я сделала стенд где наглядно показано как выглядит аллотропия.

Источник

Аллатропия кислорода, углерода, фосфора и серы в сравнительных таблицах
материал для подготовки к егэ (гиа) по химии (9, 11 класс) по теме

Громова Ольга Ильинична

Аллотропия- способность химического элемента существовать в виде двух или нескольких простых веществ, отличающихся лишь числом атомов в молекуле, либо строением.

Скачать:

Вложение Размер
allatropnye_modif._.c_sp.docx 341.52 КБ

Предварительный просмотр:

Аллотропия — сп особность химического элемента существовать в виде двух или нескольких простых веществ, отличающихся лишь числом атомов в молекуле, либо строением. Углерод

Алмаз- SP 3 гибридизация

Графит- SP 2 гибридизация

Фулерен -SP 2 гибридизация

Графен-SP 2 гибридизация

Карбин -SP гибридизация

Серо-чёрное вещество, с металлическим блеском, жирное на ощупь

Теплопроводность и электропроводность

Не проводит тепло и электричество

Проводит тепло и электричество

Тип кристаллической решётки

Аллотропия углерода обусловлена различным расположением атомов в кристаллической решётке

Алмаз и графит-атомная кристаллическая решётка, Фулерен-молекулярная (С 60 )

Кислород существует в виде двух аллотропных модификаций –O 2 и О 3

Вещество, формула которого O2, встречается в атмосфере, гидросфере, земной коре и живых организмах. Около 20% атмосферы образовано двухатомными молекулами кислорода. В стратосфере на высоте примерно 12–50 км от земной поверхности находится слой, получивший название «озоновый экран». Его состав отражает формула O3. Озон защищает нашу планету, интенсивно поглощая опасные лучи красного и ультрафиолетового спектра Солнца.

Сравнение кислорода и озона

2 атома кислорода

3 атома кислорода

Агрегатное состояние и цвет

Бесцветный прозрачный газ либо бледно-голубая жидкость

Голубой газ, жидкость синего цвета, темно-фиолетовое твердое вещество

Острый, напоминающий о грозе, свежескошенном сене

Температура плавления (°С)

Точка кипения (°С)

Растворимость в воде

Лучше, чем у кислорода

При обычных условиях стабилен

Легко разлагается с образованием кислорода

Тип кристаллической решётки

. Аллотропия кислорода и озона обусловлена различным числом кислорода в молекулах веществ.

Кислород — один из самых часто встречающихся элементов в природе, в атмосфере на его долю приходится 21%. Он поддерживает жизнь на планете и делает возможным горение. Самый распространенный элемент на Земле, является компонентом большинства горных пород и минералов. Более 60% массы человеческого тела приходится на кислород.

Бесцветный, не обладающий запахом газ — кислород, плохо растворим в воде и немного тяжелее воздуха. При охлаждении до -183С кислород становится прозрачной голубоватой жидкостью с плотностью, превышающей плотность воды.

Озон О 3 находится в стратосфере на высоте 25-50 километров, образуя озоновый слой.

Озон образуется при разложении кислорода под воздействием ультрафиолетовых солнечных лучей, а также при атмосферных разрядах.

Свое название он получил благодаря сильному запаху (от греческого слова ozon– душистый).

Это бледно-голубой нестабильный газ. Легко растворяется в воде, обладает бактерицидными свойствами и используется для дезинфекции воды и воздуха. В больших количествах озон опасен. Благодаря своей способности поглощать ультрафиолетовые лучи, озон защищает живые организмы – людей, животных и растения – от опасного УФ-излучения Солнца.

Источник

Adblock
detector